Resumen
The maintenance of ship hulls involves a series of routine tasks during dry-docking that renews its life-time and operating efficiency. One such task is hull inspection, which is always seen as harmful for human operators and a time-consuming task. The shipping maintenance industries started using the robotic solutions in order to reduce the human risk. However, most of such robotic systems cannot operate fully autonomously due to the fact that it requires humans in the loop. On the other hand, an autonomous hull inspection robot, called Sparrow, is presented in this paper. The proposed robot is capable of navigating autonomously on the vertical metal surface and it could perform metal thickness inspection. This article summarizes the robot?s mechanical design, system control, autonomy, and the inspection module. We evaluated the robot?s performance by conducting experimental trials on three different metal plates that varied in thickness. The results indicate that the presented robot achieves significantly better locomotion while climbing, and it can autonomously measure the metal thickness, which significantly reduces the human efforts in real-time.