Resumen
The application of biochar can affect soil properties and retention of fertilizer nitrogen, but its effects and mechanism on the retention capacity of different forms of nitrogen in soils are still uncertain. In this study, an indoor soil column leaching experiment was conducted using vegetable soil samples with 3% rice husk biochar by mass prepared at 450 °C by pyrolysis and 150 mg N/kg 15N-labeled urea. Adding biochar increased the soil pH, thus alleviating soil acidification caused by fertilizer nitrogen application. It also increased the content of soil organic carbon, total nitrogen and available phosphorus while decreasing that of NH4+-N and NOX--N(NO3--Nand NO2--N) in soils. NOX--N was the predominant form in the leachate of all treatments, accounting for 63.15?87.90% of the total N loss. Compared to the urea-alone application (the N treatment), incorporating biochar and urea (the RBN treatment) significantly reduced total N and NOX--N loss by 19.99% and 25.95%, respectively, while showing slight effects on NH4+-N loss. The 15N results show that fertilizer N retention in soil increased by 13.67%, while inorganic 15N leaching decreased by 25.97% after the biochar addition, compared to that in the N treatment. The RBN treatment increased fertilizer N losses in other ways (e.g., organic N leaching, ammonia and NOx volatilization) by 21.72%. Effects of biochar application on other N losses need to be further investigated. Biochar application can reduce the leaching of inorganic 15N and improve fertilizer N retention in the soil. Thus, the potential risk of fertilizer N on the quality of water bodies can be reduced.