Resumen
Network caching is a technique used to speed-up user access to frequently requested contents in complex data networks. This paper presents a two-layer overlay network caching system for content distribution. It is used to define some caching scenarios with increasing complexity, which refers to real situations, including mobile 5G connectivity. For each scenario our aim is to maximize the hit ratio, which leads to the formulation of NP-complete optimization problems. The heuristic solutions proposed are based on the theory of the maximization of monotone submodular functions under matroid constraints. After the determination of the approximation ratio of the greedy heuristic algorithms proposed, a numerical performance analysis is shown. This analysis includes a comparison with the Least-Frequently Used (LFU) eviction strategy adapted to the analyzed systems. Results show very good performance, under the hypotheses of either known or unknown popularity of contents.