Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Computation  /  Vol: 8 Par: 2 (2020)  /  Artículo
ARTÍCULO
TITULO

Computational Analysis of Air Lubrication System for Commercial Shipping and Impacts on Fuel Consumption

Andreas G. Fotopoulos and Dionissios P. Margaris    

Resumen

Our study presents the computational implementation of an air lubrication system on a commercial ship with 154,800 m3 Liquified Natural Gas capacity. The air lubrication reduces the skin friction between the ship?s wetted area and sea water. We analyze the real operating conditions as well as the assumptions, that will approach the problem as accurately as possible. The computational analysis is performed with the ANSYS FLUENT software. Two separate geometries (two different models) are drawn for a ship?s hull: with and without an air lubrication system. Our aim is to extract two different skin friction coefficients, which affect the fuel consumption and the CO2 emissions of the ship. A ship?s hull has never been designed before in real scale with air lubrication injectors adjusted in a computational environment, in order to simulate the function of air lubrication system. The system?s impact on the minimization of LNG transfer cost and on the reduction in fuel consumption and CO2 emissions is also examined. The study demonstrates the way to install the entire system in a new building. Fuel consumption can be reduced by up to 8%, and daily savings could reach up to EUR 8000 per travelling day.

 Artículos similares

       
 
Seong Hyun Hong, Young Jin Kim, Soo Hyung Park, Sung Nam Jung and Ki Ro Kim    
The air and structural loads of a 5-ton class light helicopter (LH) rotor in a 2.24 g pull-up maneuver are investigated using a coupling between the computational structural dynamics (CSD) and computational fluid dynamics (CFD) methods. The LH rotor is c... ver más
Revista: Aerospace

 
Yalin Dai, Zhouwei Fan, Jian Xu, You He and Xiongqing Yu    
A special feature of airbreathing hypersonic aircraft is the complex coupling between aerodynamic and propulsive performances. This study presents a rapid analysis methodology for the integration of these two critical aspects in the conceptual design of ... ver más
Revista: Aerospace

 
Sheng Zhang, Yuguang Bai, Youwei Zhang and Dan Zhao    
Hypersonic vehicles or engines usually employ complex thermal protecting shells. This sometimes brings multi-physics difficulties, e.g., thermal-aeroelastic problems like panel flutter etc. This paper aims to propose a novel optimization method versus th... ver más
Revista: Aerospace

 
George Tzoumakis, Konstantinos Fotopoulos and George Lampeas    
Future liquid hydrogen-powered aircraft requires the design and optimization of a large number of systems and subsystems, with cryogenic tanks being one of the largest and most critical. Considering previous space applications, these tanks are usually st... ver más
Revista: Aerospace

 
Gleice Kelly Barbosa Souza, Samara Oliveira Silva Santos, André Luiz Carvalho Ottoni, Marcos Santos Oliveira, Daniela Carine Ramires Oliveira and Erivelton Geraldo Nepomuceno    
Reinforcement learning is an important technique in various fields, particularly in automated machine learning for reinforcement learning (AutoRL). The integration of transfer learning (TL) with AutoRL in combinatorial optimization is an area that requir... ver más
Revista: Algorithms