Resumen
In this paper, we propose an unconstrained face verification approach that is dependent on Hybrid Siamese architecture under limited resources. The general face verification trend suggests that larger training datasets and/or complex architectures lead to higher accuracy. The proposed approach tends to achieve high accuracy while using a small dataset and a simple architecture by directly learn face?s similarity/dissimilarity from raw face pixels, which is critical for various applications. The proposed architecture has two branches; the first part of these branches is trained independently, while the other parts shared their parameters. A multi-batch algorithm is utilized for training. The training process takes a few hours on a single GPU. The proposed approach achieves near-human accuracy (98.9%) on the Labeled Faces in the Wild (LFW) benchmark, which is competitive with other techniques that are presented in the literature. It reaches 99.1% on the Arabian faces dataset. Moreover, features learned by the proposed architecture are used in building a face clustering system that is based on an updated version of the Density-Based Spatial Clustering of Applications with Noise (DBSCAN). To handle the cluster quality challenge, a novel post-clustering optimization procedure is proposed. It outperforms popular clustering approaches, like K-Means and spectral by 0.098 and up to 0.344 according to F1-measure.