Resumen
Relying on the Beijing-Shijiazhuang Expressway widening project near the impervious wall of a reservoir, this paper uses FLAC3D two-dimensional and three-dimensional numerical simulation methods to establish the whole process model of the impervious wall of the reservoir affected by the construction load of the high-way reconstruction section. The stress and strain state of the cut-off wall in the high-way reconstruction section and the nearby reservoir is simulated in detail, the overall deformation of the cut-off wall in the reservoir is directly reflected, and the interaction and differential deformation between the wall structures are reflected. The safety and stability of the cutoff wall of the reservoir affected by the construction load are evaluated so that various advanced mechanical behaviors of the cutoff wall can be predicted. Research results show that the horizontal displacement value of the wall gradually increases from bottom to top, and the maximum value appears at the top of the wall. The horizontal displacement value of the 1?3 walls is relatively large, with the maximum value of 22.368 mm, and the horizontal displacement value of the 4?10 walls shows little difference. This is on account of the gravity of the backfill, the strata in the whole project area having settled, and the settlement at the bottom of the cut-off wall being 2.542 mm. At the root of the rigid cut-off wall, the compressive stress concentration occurs, with the maximum value between 1.75 MPa and 2.15 MPa. Due to the size of the structure, the maximum tensile stress of 0.237 MPa appears in the local area near the guide wall of the rigid cut-off wall, which will not endanger the rigid cut-off wall because of its small value. The maximum stress in the rigid impervious wall and the plastic impervious wall are 1.90?2.15 MPa and 1.00?1.12 MPa, respectively. Apart from the small tensile stress at the connecting guide wall between the rigid cut-off wall and the plastic concrete cut-off wall, the cut-off wall is under pressure, especially the plastic cut-off wall. Combined with the analysis of the stress state of the wall, it can be determined that the anti-seepage wall (rigid cut-off wall and plastic concrete cut-off wall) is stable and safe during the construction period.