Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 2 (2022)  /  Artículo
ARTÍCULO
TITULO

A CSI-Based Multi-Environment Human Activity Recognition Framework

Baha A. Alsaify    
Mahmoud M. Almazari    
Rami Alazrai    
Sahel Alouneh and Mohammad I. Daoud    

Resumen

Passive human activity recognition (HAR) systems, in which no sensors are attached to the subject, provide great potentials compared to conventional systems. One of the recently used techniques showing tremendous potential is channel state information (CSI)-based HAR systems. In this work, we present a multi-environment human activity recognition system based on observing the changes in the CSI values of the exchanged wireless packets carried by OFDM subcarriers. In essence, we introduce a five-stage CSI-based human activity recognition approach. First, the acquired CSI values associated with each recorded activity instance are processed to remove the existing noise from the recorded data. A novel segmentation algorithm is then presented to identify and extract the portion of the signal that contains the activity. Next, the extracted activity segment is processed using the procedure proposed in the first stage. After that, the relevant features are extracted, and the important features are selected. Finally, the selected features are used to train a support vector machine (SVM) classifier to identify the different performed activities. To validate the performance of the proposed approach, we collected data in two different environments. In each of the environments, several activities were performed by multiple subjects. The performed experiments showed that our proposed approach achieved an average activity recognition accuracy of 91.27%.

 Artículos similares

       
 
André B. Peres, Mário C. Espada, Fernando J. Santos, Ricardo A. M. Robalo, Amândio A. P. Dias, Jesús Muñoz-Jiménez, Andrei Sancassani, Danilo A. Massini and Dalton M. Pessôa Filho    
This paper presents a comparison of mathematical and cinematic motion analysis regarding the accuracy of the detection of alterations in the patterns of positional sequence during biceps-curl lifting exercise. Two different methods, one with and one with... ver más
Revista: Applied Sciences

 
Yaxin Mao, Lamei Yan, Hongyu Guo, Yujie Hong, Xiaocheng Huang and Youwei Yuan    
Inertial measurement unit (IMU) technology has gained popularity in human activity recognition (HAR) due to its ability to identify human activity by measuring acceleration, angular velocity, and magnetic flux in key body areas like the wrist and knee. I... ver más
Revista: Applied Sciences

 
Hossein Shahverdi, Mohammad Nabati, Parisa Fard Moshiri, Reza Asvadi and Seyed Ali Ghorashi    
Human Activity Recognition (HAR) has been a popular area of research in the Internet of Things (IoT) and Human?Computer Interaction (HCI) over the past decade. The objective of this field is to detect human activities through numeric or visual representa... ver más
Revista: Information

 
Anne Fischer, Alexandre Beiderwellen Bedrikow, Iris D. Tommelein, Konrad Nübel and Johannes Fottner    
As in manufacturing with its Industry 4.0 transformation, the enormous potential of artificial intelligence (AI) is also being recognized in the construction industry. Specifically, the equipment-intensive construction industry can benefit from using AI.... ver más
Revista: Algorithms

 
Olena Pavliuk, Myroslav Mishchuk and Christine Strauss    
Over the last few years, human activity recognition (HAR) has drawn increasing interest from the scientific community. This attention is mainly attributable to the proliferation of wearable sensors and the expanding role of HAR in such fields as healthca... ver más
Revista: Algorithms