Redirigiendo al acceso original de articulo en 19 segundos...
ARTÍCULO
TITULO

Fusion of Multi-Sensor-Derived Heights and OSM-Derived Building Footprints for Urban 3D Reconstruction

Hossein Bagheri    
Michael Schmitt and Xiaoxiang Zhu    

Resumen

So-called prismatic 3D building models, following the level-of-detail (LOD) 1 of the OGC City Geography Markup Language (CityGML) standard, are usually generated automatically by combining building footprints with height values. Typically, high-resolution digital elevation models (DEMs) or dense LiDAR point clouds are used to generate these building models. However, high-resolution LiDAR data are usually not available with extensive coverage, whereas globally available DEM data are often not detailed and accurate enough to provide sufficient input to the modeling of individual buildings. Therefore, this paper investigates the possibility of generating LOD1 building models from both volunteered geographic information (VGI) in the form of OpenStreetMap data and remote sensing-derived geodata improved by multi-sensor and multi-modal DEM fusion techniques or produced by synthetic aperture radar (SAR)-optical stereogrammetry. The results of this study show several things: First, it can be seen that the height information resulting from data fusion is of higher quality than the original data sources. Secondly, the study confirms that simple, prismatic building models can be reconstructed by combining OpenStreetMap building footprints and easily accessible, remote sensing-derived geodata, indicating the potential of application on extensive areas. The building models were created under the assumption of flat terrain at a constant height, which is valid in the selected study area.

 Artículos similares

       
 
Zhixin Li, Song Ji, Dazhao Fan, Zhen Yan, Fengyi Wang and Ren Wang    
Accurate building geometry information is crucial for urban planning in constrained spaces, fueling the growing demand for large-scale, high-precision 3D city modeling. Traditional methods like oblique photogrammetry and LiDAR prove time consuming and ex... ver más

 
Olusayo Ayobami Bamgbose, Babatunde Fatai Ogunbayo and Clinton Ohis Aigbavboa    
The widespread adoption of building information modelling in the construction industry faces significant obstacles, particularly among small and medium-sized construction enterprises. This research accessed barriers to building information modelling adop... ver más
Revista: Buildings

 
Wahhaj Ahmed, Baqer Al-Ramadan, Muhammad Asif and Zulfikar Adamu    
Energy and environmental challenges are a major concern across the world and the urban residential building sector, being one of the main stakeholders in energy consumption and greenhouse gas emissions, needs to be more energy efficient and reduce carbon... ver más
Revista: Buildings

 
Wenqi Gao, Ninghua Chen, Jianyu Chen, Bowen Gao, Yaochen Xu, Xuhua Weng and Xinhao Jiang    
Geospatial data, especially remote sensing (RS) data, are of significant importance for public services and production activities. Expertise is critical in processing raw data, generating geospatial information, and acquiring domain knowledge and other r... ver más

 
Guy Austern, Tanya Bloch and Yael Abulafia    
The application of machine learning (ML) for the automatic classification of building elements is a powerful technique for ensuring information integrity in building information models (BIMs). Previous work has demonstrated the favorable performance of s... ver más
Revista: Buildings