Redirigiendo al acceso original de articulo en 15 segundos...
ARTÍCULO
TITULO

Classification of Spatial Objects with the Use of Graph Neural Networks

Iwona Kaczmarek    
Adam Iwaniak and Aleksandra Swietlicka    

Resumen

Classification is one of the most-common machine learning tasks. In the field of GIS, deep-neural-network-based classification algorithms are mainly used in the field of remote sensing, for example for image classification. In the case of spatial data in the form of polygons or lines, the representation of the data in the form of a graph enables the use of graph neural networks (GNNs) to classify spatial objects, taking into account their topology. In this article, a method for multi-class classification of spatial objects using GNNs is proposed. The method was compared to two others that are based solely on text classification or text classification and an adjacency matrix. The use case for the developed method was the classification of planning zones in local spatial development plans. The experiments indicated that information about the topology of objects has a significant impact on improving the classification results using GNNs. It is also important to take into account different input parameters, such as the document length, the form of the training data representation, or the network architecture used, in order to optimize the model.

 Artículos similares

       
 
Yuting Chen, Pengjun Zhao, Yi Lin, Yushi Sun, Rui Chen, Ling Yu and Yu Liu    
Precise identification of spatial unit functional features in the city is a pre-condition for urban planning and policy-making. However, inferring unknown attributes of urban spatial units from data mining of spatial interaction remains a challenge in ge... ver más

 
Andrea Emma Pravitasari, Galuh Syahbana Indraprahasta, Ernan Rustiadi, Vely Brian Rosandi, Yuri Ardhya Stanny, Siti Wulandari, Rista Ardy Priatama and Alfin Murtadho    
This paper is situated within the discussion of mega-urbanization, a particular urbanization process that entails a large-scale agglomeration. In this paper, our focus is on urbanization in Java, Indonesia?s most dynamic region. We add to the literature ... ver más

 
Lianlian He, Hao Li and Rui Zhang    
Recent advances in knowledge graphs show great promise to link various data together to provide a semantic network. Place is an important part in the big picture of the knowledge graph since it serves as a powerful glue to link any data to its georeferen... ver más

 
Jianjun Chen, Zizhen Chen, Renjie Huang, Haotian You, Xiaowen Han, Tao Yue and Guoqing Zhou    
When employing remote sensing images, it is challenging to classify vegetation species and ground objects due to the abundance of wetland vegetation species and the high fragmentation of ground objects. Remote sensing images are classified primarily acco... ver más
Revista: Drones

 
Qingqing Hong, Xinyi Zhong, Weitong Chen, Zhenghua Zhang and Bin Li    
Hyperspectral images (HSIs) are pivotal in various fields due to their rich spectral?spatial information. While convolutional neural networks (CNNs) have notably enhanced HSI classification, they often generate redundant spatial features. To address this... ver más