Resumen
A total of three different satellite products, CHIRPS, GPM, and PERSIANN, with different spatial resolutions, were examined for their ability to estimate rainfall data at a pixel level, using 30-year-long observations from six locations. Quantitative and qualitative accuracy indicators, as well as R2 and NSE from hydrological estimates, were used as the performance measures. The results show that all of the satellite estimates are unsatisfactory, giving the NRMSE ranging from 6 to 30% at a daily level, with CC only 0.21?0.36. Limited number of gauges, coarse spatial data resolution, and physical terrain complexity were found to be linked with low accuracy. Accuracy was slightly better in dry seasons or low rain rate classes. The errors increased exponentially with the increase in rain rates. CHIPRS and PERSIANN tend to slightly underestimate at lower rain rates, but do show a consistently better performance, with an NRMSE of 6?12%. CHRIPS and PERSIANN also exhibit better estimates of monthly flow data and water balance components, namely runoff, groundwater, and water yield. GPM has a better ability for rainfall event detections, especially during high rainfall events or extremes (>40 mm/day). The errors of the satellite products are generally linked to slope, wind, elevation, and evapotranspiration. Hydrologic simulations using SWAT modelling and the three satellite rainfall products show that CHIRPS slightly has the daily best performance, with R2 of 0.59 and 0.62, and NSE = 0.54, and the monthly aggregated improved at a monthly level. The water balance components generated at an annual level, using three satellite products, show that CHIRPS outperformed with a ration closer to one, though with a tendency to overestimate up to 3?4× times the data generated from the rainfall gauges. The findings of this study are beneficial in supporting efforts for improving satellite rainfall products and water resource implications.