Redirigiendo al acceso original de articulo en 23 segundos...
ARTÍCULO
TITULO

Structural Safety Analysis for an Oscillating Water Column Wave Power Conversion System Installed in Caisson Structure

Hsien Hua Lee    
Thung-Yeh Wu    
Chung-You Lin and Yung-Fang Chiu    

Resumen

In this study, an alternative way, a so called caisson based type of oscillating water column (OWC) wave energy converting system was proposed to capture and convert wave energy. Since the caisson structure is constructed to protect the coastal line or ports, it is important to know if a built-in associated OWC system will be a burden to affect the safety of the structure or it is safe enough to work appropriately. In this study, three steps of structural analysis were performed: firstly, the analysis for the structural safety of the whole caisson structure; secondly, performing the mechanic analysis for the chamber of the associated OWC system; and finally, performing the analysis for the wave induced air-pressure in the chamber under the design conditions of a local location during the wave-converting operation. For the structural safety analysis, a typical structural model associated with caisson breakwater was built and analyzed while the shape of the structure, material applied to the construction, and associated boundary conditions were all set-up according to the wave and structures. The motion and the strain distribution of the caisson structure subjected to designated waves of 50-year return period were evaluated and compared to the safety requirement by the code. For the analysis of the energy converting performance, a numerical method by using a theorem of unsteady Navier?Stokes equations in conservation form was used to analyze the proposed OWC model when the structure subjected to an incident wave of a 10-year return period.

 Artículos similares

       
 
Eyad K. Sayhood, Nisreen S. Mohammed, Salam J. Hilo and Salih S. Salih    
This paper presents comprehensive empirical equations to predict the shear strength capacity of reinforced concrete deep beams, with a focus on improving the accuracy of existing codes. Analyzing 198 deep beams imported from 15 existing investigations, t... ver más
Revista: Infrastructures

 
Fan Zhu, Meng Zhang, Fuxuan Ma, Zhihua Li and Xianqiang Qu    
Wind turbine towers experience complex dynamic loads during actual operation, and these loads are difficult to accurately predict in advance, which may lead to inaccurate structural fatigue and strength assessment during the structural design phase, ther... ver más

 
Mehdi Hajinezhadian and Behrouz Behnam    
Offshore platforms are important infrastructures that often face severe environmental conditions, such as corrosion, throughout their lifetime. This can continuously decrease their structural robustness. Despite the availability of many anti-corrosion st... ver más

 
Touraj Farsadi, Majid Ahmadi, Melin Sahin, Hamed Haddad Khodaparast, Altan Kayran and Michael I. Friswell    
In the field of aerospace engineering, the design and manufacturing of high aspect ratio composite wings has become a focal point of innovation and efficiency. These long, slender wings, constructed with advanced materials such as carbon fiber and employ... ver más
Revista: Aerospace

 
Haotian Luo, Weijun Pan, Yidi Wang and Yuming Luo    
Today, aviation has grown significantly in importance. However, the challenge of flight delays has become increasingly severe due to the need for safe separation between aircraft to mitigate wake turbulence effects. The primary emphasis of this investiga... ver más
Revista: Aerospace