Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Future Internet  /  Vol: 13 Par: 5 (2021)  /  Artículo
ARTÍCULO
TITULO

Deep Learning-Based Classification of Fine Hand Movements from Low Frequency EEG

Giulia Bressan    
Giulia Cisotto    
Gernot R. Müller-Putz and Selina Christin Wriessnegger    

Resumen

The classification of different fine hand movements from electroencephalogram (EEG) signals represents a relevant research challenge, e.g., in BCI applications for motor rehabilitation. Here, we analyzed two different datasets where fine hand movements (touch, grasp, palmar, and lateral grasp) were performed in a self-paced modality. We trained and tested a newly proposed CNN, and we compared its classification performance with two well-established machine learning models, namely, shrinkage-linear discriminant analysis (LDA) and Random Forest (RF). Compared to previous literature, we included neuroscientific evidence, and we trained our Convolutional Neural Network (CNN) model on the so-called movement-related cortical potentials (MRCPs). They are EEG amplitude modulations at low frequencies, i.e., (0.3,3)" role="presentation">(0.3,3)(0.3,3) ( 0.3 , 3 ) Hz that have been proved to encode several properties of the movements, e.g., type of grasp, force level, and speed. We showed that CNN achieved good performance in both datasets (accuracy of 0.70±0.11" role="presentation">0.70±0.110.70±0.11 0.70 ± 0.11 and 0.64±0.10" role="presentation">0.64±0.100.64±0.10 0.64 ± 0.10 , for the two datasets, respectively), and they were similar or superior to the baseline models (accuracy of 0.68±0.10" role="presentation">0.68±0.100.68±0.10 0.68 ± 0.10 and 0.62±0.07" role="presentation">0.62±0.070.62±0.07 0.62 ± 0.07 with sLDA; accuracy of 0.70±0.15" role="presentation">0.70±0.150.70±0.15 0.70 ± 0.15 and 0.61±0.07" role="presentation">0.61±0.070.61±0.07 0.61 ± 0.07 with RF, with comparable performance in precision and recall). In addition, compared to the baseline, our CNN requires a faster pre-processing procedure, paving the way for its possible use in online BCI applications.

Palabras claves

EEG -  MRCP -  CNN -  RF -  LDA -  BCI -  hand -  grasping -  palmar grasp -  lateral grasp

 Artículos similares

       
 
Zhongda Ren, Chuanjie Liu, Yafei Ou, Peng Zhang, Heshan Fan, Xiaolong Zhao, Heqin Cheng, Lizhi Teng, Ming Tang and Fengnian Zhou    
Effectively simulating the variation in suspended sediment concentration (SSC) in estuaries during typhoons is significant for the water quality and ecological conditions of estuarine shoal wetlands and their adjacent coastal waters. During typhoons, SSC... ver más
Revista: Water

 
Minghao Liu, Qingxi Luo, Jianxiang Wang, Lingbo Sun, Tingting Xu and Enming Wang    
Land use/cover change (LUCC) refers to the phenomenon of changes in the Earth?s surface over time. Accurate prediction of LUCC is crucial for guiding policy formulation and resource management, contributing to the sustainable use of land, and maintaining... ver más

 
Ching-Lung Fan    
The emergence of deep learning-based classification methods has led to considerable advancements and remarkable performance in image recognition. This study introduces the Multiscale Feature Convolutional Neural Network (MSFCNN) for the extraction of com... ver más

 
Yuhwan Kim, Chang-Ho Choi, Chang-Young Park and Seonghyun Park    
In today?s society, where people spend over 90% of their time indoors, indoor air quality (IAQ) is crucial for sustaining human life. However, as various indoor activities such as cooking generate diverse types of pollutants in indoor spaces, IAQ has eme... ver más
Revista: Buildings

 
Yu Guo, Guigen Nie, Wenliang Gao and Mi Liao    
Semantic segmentation is a critical task in computer vision that aims to assign each pixel in an image a corresponding label on the basis of its semantic content. This task is commonly referred to as dense labeling because it requires pixel-level classif... ver más
Revista: Future Internet