Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 12 (2022)  /  Artículo
ARTÍCULO
TITULO

An Intelligent Penetration Test Simulation Environment Construction Method Incorporating Social Engineering Factors

Yang Li    
Yongjie Wang    
Xinli Xiong    
Jingye Zhang and Qian Yao    

Resumen

The penetration test has many repetitive operations and requires advanced expert knowledge, therefore, the manual penetration test is inefficient. With the development of reinforcement learning, the intelligent penetration test has been a research hotspot. However, the existing intelligent penetration test simulation environments only focus on the exploits of target hosts by the penetration tester agent?s actions while ignoring the important role of social engineering in the penetration test in reality. In addition, the construction of the existing penetration test simulation environment is based on the traditional network graph model without integrating security factors and attributes, and it is difficult to express the interaction between the penetration tester and the target network. This paper constructs an improved network graph model for penetration test (NMPT), which integrates the relevant security attributes of the penetration test. The NMPT model lays the foundation for extending the penetration tester?s social engineering actions. Then, we propose an intelligent penetration test method that incorporates social engineering factors (SE-AIPT) based on the Markov Decision Process. We adopt several mainstream reinforcement learning algorithms to train attack agents. The experiments show that the SE-AIPT method could vividly model the penetration tester agent?s social engineering actions, which effectively improves the reality of the simulation environment. Moreover, the penetration tester agent shows superior effects in the attack path discovery in the intelligent penetration test simulation environment constructed by the SE-AIPT method.

 Artículos similares

       
 
Serio Angelo Maria Agriesti, Luca Studer, Giovanna Marchionni, Paolo Gandini and Xiaobo Qu    
By now, it is widely acknowledged among stakeholders and academia that infrastructures will have to be composed both by a physical component and a digital one. The deployment of technologies exploiting dedicated short-range communications is viewed as th... ver más
Revista: Infrastructures

 
Mingxiong Zhao, Han Wang, Jin Guo, Di Liu, Cheng Xie, Qing Liu and Zhibo Cheng    
The industrial 4.0 era is the fourth industrial revolution and is characterized by network penetration; therefore, traditional manufacturing and value creation will undergo revolutionary changes. Artificial intelligence will drive the next industrial tec... ver más
Revista: Applied Sciences