Resumen
With increasing demands for huge ship dimensions and the wide use of high-strength steel, the influence of slamming and elastic structure on structural strength cannot be ignored. Therefore, in this paper, a three-dimensional (3D) nonlinear hydroelastic theory is introduced, in which the nonlinear hydrostatic restoring force caused by instantaneous wetted surface as well as slamming force are taken into consideration, and the bending moments with/without slamming effects are calculated, respectively. Numerical simulations of the dynamic response of a flexible hull at different speeds are carried out using the finite element analysis software MSC/PATRAN. By comparison with the results of classical beam theory, the accuracy of the dynamic analysis method is studied. Finally, the dynamic response method is compared with the quasi-static method and classical beam theory. By analyzing and quantifying the influence of forward speed and nonlinear factors on structural responses, the reasonable applicable conditions for different methods are discussed, which can be used as reference in the structure design of bulk carriers.