Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Applied Sciences  /  Vol: 9 Par: 12 (2019)  /  Artículo
ARTÍCULO
TITULO

A Convolutional Neural Network Based Auto Features Extraction Method for Tea Classification with Electronic Tongue

Yuan hong Zhong    
Shun Zhang    
Rongbu He    
Jingyi Zhang    
Zhaokun Zhou    
Xinyu Cheng    
Guan Huang and Jing Zhang    

Resumen

Feature extraction is a key part of the electronic tongue system. Almost all of the existing features extraction methods are ?hand-crafted?, which are difficult in features selection and poor in stability. The lack of automatic, efficient and accurate features extraction methods has limited the application and development of electronic tongue systems. In this work, a convolutional neural network-based auto features extraction strategy (CNN-AFE) in an electronic tongue (e-tongue) system for tea classification was proposed. First, the sensor response of the e-tongue was converted to time-frequency maps by short-time Fourier transform (STFT). Second, features were extracted by convolutional neural network (CNN) with time-frequency maps as input. Finally, the features extraction and classification results were carried out under a general shallow CNN architecture. To evaluate the performance of the proposed strategy, experiments were held on a tea database containing 5100 samples for five kinds of tea. Compared with other features extraction methods including features of raw response, peak-inflection point, discrete cosine transform (DCT), discrete wavelet transform (DWT) and singular value decomposition (SVD), the proposed model showed superior performance. Nearly 99.9% classification accuracy was obtained and the proposed method is an approximate end-to-end features extraction and pattern recognition model, which reduces manual operation and improves efficiency.

 Artículos similares

       
 
Diya Wang, Yonglin Zhang, Lixin Wu, Yupeng Tai, Haibin Wang, Jun Wang, Fabrice Meriaudeau and Fan Yang    
In recent years, the study of deep learning techniques for underwater acoustic channel estimation has gained widespread attention. However, existing neural network channel estimation methods often overfit to training dataset noise levels, leading to dimi... ver más

 
Mingyoung Jeng, Alvir Nobel, Vinayak Jha, David Levy, Dylan Kneidel, Manu Chaudhary, Ishraq Islam, Evan Baumgartner, Eade Vanderhoof, Audrey Facer, Manish Singh, Abina Arshad and Esam El-Araby    
Convolutional neural networks (CNNs) have proven to be a very efficient class of machine learning (ML) architectures for handling multidimensional data by maintaining data locality, especially in the field of computer vision. Data pooling, a major compon... ver más
Revista: Algorithms

 
Pengfei Zhao and Ze Liu    
The three-dimensional (3D) reconstruction of Electromagnetic Tomography (EMT) is an important task for many applications, such as the non-destructive testing of inner defects in rail systems. Additionally, image reconstruction algorithms utilizing deep l... ver más
Revista: Applied Sciences

 
Mohammad Alhumaid and Ayman G. Fayoumi    
Paranasal sinus pathologies, particularly those affecting the maxillary sinuses, pose significant challenges in diagnosis and treatment due to the complex anatomical structures and diverse disease manifestations. The aim of this study is to investigate t... ver más
Revista: Applied Sciences

 
Junyi Chen, Yanyun Shen, Yinyu Liang, Zhipan Wang and Qingling Zhang    
Aircraft detection in SAR images of airports remains crucial for continuous ground observation and aviation transportation scheduling in all weather conditions, but low resolution and complex scenes pose unique challenges. Existing methods struggle with ... ver más
Revista: Applied Sciences