Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Water  /  Vol: 15 Par: 21 (2023)  /  Artículo
ARTÍCULO
TITULO

A Novel Algorithm for the Retrieval of Chlorophyll a in Marine Environments Using Deep Learning

You Zeng    
Tianlong Liang    
Donglin Fan and Hongchang He    

Resumen

Chlorophyll a (Chla) is a crucial pigment in phytoplankton, playing a vital role in determining phytoplankton biomass and water nutrient status. However, in optically complex water bodies, Chla concentration is no longer the primary factor influencing remote sensing spectral reflectance signals, leading to significant errors in traditional Chla concentration estimation methods. With advancements in in situ measurements, synchronized satellite data, and computer technology, machine learning algorithms have become popular in Chla concentration retrieval. Nevertheless, when using machine learning methods to estimate Chla concentration, abrupt changes in Chla values can disrupt the spatiotemporal smoothness of the retrieval results. Therefore, this study proposes a two-stage approach to enhance the accuracy of Chla concentration estimation in optically complex water bodies. In the first stage, a one-dimensional convolutional neural network (1D CNN) is employed for precise Chla retrieval, and in the second stage, the regression layer of the 1DCNN is replaced with support vector regression (SVR). The research findings are as follows: (1) In the first stage, the performance metrics (R2, RMSE, RMLSE, Bias, MAE) of the 1D CNN outperform state-of-the-art algorithms (OCI, SVR, RFR) on the test dataset. (2) After the second stage, the performance further improves, with the metrics achieving values of 0.892, 11.243, 0.052, 1.056, and 1.444, respectively. (3) In mid- to high-latitude regions, the inversion performance of 1D CNN\SVR is superior to other algorithms, exhibiting richer details and higher noise tolerance in nearshore areas. (4) 1D CNN\SVR demonstrates high inversion capabilities in water bodies with medium-to-high nutrient levels.

 Artículos similares

       
 
Shitu Chen, Ling Feng, Xuteng Bao, Zhe Jiang, Bowen Xing and Jingxiang Xu    
Path planning is crucial for unmanned surface vehicles (USVs) to navigate and avoid obstacles efficiently. This study evaluates and contrasts various USV path-planning algorithms, focusing on their effectiveness in dynamic obstacle avoidance, resistance ... ver más

 
Shuling Zhao and Sishuo Zhao    
Due to the intensification of economic globalization and the impact of global warming, the development of methods to reduce shipping costs and reduce carbon emissions has become crucial. In this study, a multi-objective optimization algorithm was designe... ver más

 
Mohammed Suleiman Mohammed Rudwan and Jean Vincent Fonou-Dombeu    
Ontology merging is an important task in ontology engineering to date. However, despite the efforts devoted to ontology merging, the incorporation of relevant features of ontologies such as axioms, individuals and annotations in the output ontologies rem... ver más

 
Zhao Xiong and Jiang Wu    
Malaria is one of the major global health threats. Microscopic examination has been designated as the ?gold standard? for malaria detection by the World Health Organization. However, it heavily relies on the experience of doctors, resulting in long diagn... ver más
Revista: Information

 
D. Criado-Ramón, L. G. B. Ruiz, J. R. S. Iruela and M. C. Pegalajar    
This paper introduces the first completely unsupervised methodology for non-intrusive load monitoring that does not rely on any additional data, making it suitable for real-life applications. The methodology includes an algorithm to efficiently decompose... ver más
Revista: Information