Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Applied Sciences  /  Vol: 9 Par: 7 (2019)  /  Artículo
ARTÍCULO
TITULO

Network Intrusion Detection Based on Novel Feature Selection Model and Various Recurrent Neural Networks

Thi-Thu-Huong Le    
Yongsu Kim and Howon Kim    

Resumen

The recent increase in hacks and computer network attacks around the world has intensified the need to develop better intrusion detection and prevention systems. The intrusion detection system (IDS) plays a vital role in detecting anomalies and attacks on the network which have become larger and more pervasive in nature. However, most anomaly-based intrusion detection systems are plagued by high false positives. Furthermore, Remote-to-Local (R2L) and User-to-Root (U2R) are two kinds of attack which have low predicted accuracy scores in advance IDS methods. Therefore, this paper proposes a novel IDS framework to overcome these IDS problems. The proposed framework including three main parts. The first part is to build SFSDT model which is the feature selection model. SFSDT is to generate the best feature subset from the original feature set. This model is a hybrid Sequence Forward Selection (SFS) algorithm and Decision Tree (DT) model. The second part is to build various IDS models to train on the best-selected feature subset. The various Recurrent Neural Networks (RNN) are traditional RNN, Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU). Two IDS datasets are used for the learned models in experiments including NSL-KDD in 2010 and ISCX in 2012. The final part is to evaluate the proposed model by comparing the proposed models to other IDS models. The experimental results show the proposed models achieve significantly improved accuracy detection rate as well as attack types classification. Furthermore, this approach can reduce the computation time by memory profilers measurement.

Palabras claves

 Artículos similares

       
 
Yussuf Ahmed, Muhammad Ajmal Azad and Taufiq Asyhari    
In recent years, there has been a notable surge in both the complexity and volume of targeted cyber attacks, largely due to heightened vulnerabilities in widely adopted technologies. The Prediction and detection of early attacks are vital to mitigating p... ver más
Revista: Information

 
Ted H. Szymanski    
The next-generation ?Industrial Internet of Things? (IIoT) will support ?Machine-to-Machine? (M2M) communications for smart Cyber-Physical-Systems and Industry 4.0, and require guaranteed cyber-security. This paper explores hardware-enforced cyber-securi... ver más
Revista: Information

 
Abhishek Phadke, F. Antonio Medrano, Tianxing Chu, Chandra N. Sekharan and Michael J. Starek    
UAV swarms have multiple real-world applications but operate in a dynamic environment where disruptions can impede performance or stop mission progress. Ideally, a UAV swarm should be resilient to disruptions to maintain the desired performance and produ... ver más
Revista: Aerospace

 
Hongpo Zhang, Bo Zhang, Lulu Huang, Zhaozhe Zhang and Haizhaoyang Huang    
Internet of Things (IoT) devices and services provide convenience but face serious security threats. The network intrusion detection system is vital in ensuring the security of the IoT environment. In the IoT environment, we propose a novel two-stage int... ver más
Revista: Information

 
Jiaming Song, Xiaojuan Wang, Mingshu He and Lei Jin    
In computer networks, Network Intrusion Detection System (NIDS) plays a very important role in identifying intrusion behaviors. NIDS can identify abnormal behaviors by analyzing network traffic. However, the performance of classifier is not very good in ... ver más
Revista: Information