Resumen
Prefabricated buildings that are more environmentally friendly have been vigorously promoted by the Chinese government because of the reduced waste and carbon emissions during the construction process. Most of the construction processes of prefabricated buildings are completed in the prefabricated component factory, but the safety risks during the hoisting process cannot be ignored. In this paper, the initial framework of a Bayesian Network (BN) is obtained from the combination of the improved Human Factors Analysis and Classification System Model (HFACS) and BN. The improved similarity aggregation method (SAM) is used to calculate the prior probability of BN, which can better summarize and deal with the fuzzy judgment of experts on risk accidents. The improved SAM can consider both the weight of experts and the relative consistency of their opinions, which is of great significance for improving the reliability of BN inputted data. This paper uses the construction project in Sanya, Hainan Province, to verify the validity of the model. The results show that the calculation results of the model are basically consistent with the actual situation. The safety risk of this project is relatively low, and the premise of unsafe behaviors and unsafe supervision are the key risk factors of the project. In addition to maintaining good construction conditions and workers? healthy states, it is also necessary to carefully check the performance of tower cranes and equipment such as spreaders. During the operation process of the tower crane, workers should avoid walking or staying within the hoisting range.