Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Applied Sciences  /  Vol: 11 Par: 9 (2021)  /  Artículo
ARTÍCULO
TITULO

Scrophularia buergeriana Extract (Brainon) Improves Scopolamine-Induced Neuronal Impairment and Cholinergic Dysfunction in Mice through CREB-BDNF Signaling Pathway

Hae-Jin Lee    
Hae-Lim Kim    
Dae-Young Lee    
Dong-Ryung Lee    
Bong-Keun Choi and Seung-Hwan Yang    

Resumen

We evaluated the effectiveness of Scrophularia buergeriana extract (Brainon) on cognitive dysfunction and determined its underlying mechanisms in a scopolamine (SCO)-treated mouse model of memory impairment. Brainon treatment for 28 days ameliorated the symptoms of memory impairment as indicated by the results of both passive avoidance performance and the Morris water mazes. Brainon lowered acetylcholinesterase activity and raised acetylcholine levels in the hippocampus. The treatment elevated the protein levels of brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP response element-binding (CREB). Additionally, the excessive generation of SCO-induced reactive oxygen species (ROS) and subsequent oxidative stress were suppressed by the enhancement of superoxide dismutase (SOD)-1 and SOD-2 proteins. mRNA levels of upregulated interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-a, as well as the apoptotic protein Bcl-2-associated X protein (Bax), cleaved caspase-9, and cleaved poly adenosine diphosphate-ribose polymerase (PARP) expression after SCO injection were downregulated by Brainon treatment. Collectively, these findings suggested that Brainon possesses anti-amnesic effects through the CREB-BDNF pathway. Moreover, it exerted antioxidant, anti-inflammatory, and anti-apoptotic effects in SCO-induced mice exhibiting cognitive impairment and memory loss.