Resumen
Due to the special hydrographic and physiographic conditions in Taiwan, flooding is likely to occur in the middle and lower reaches of a plain whenever serious rainstorm events occurred. Note worthily, the loss of lives and property caused by flooding are always most considerable in a metropolitan area, and the densely distributed buildings would, not only increase the impervious area, but also decrease the water storage area. Furthermore, a large number of intensive buildings have changed the original land flow conditions, resulting in a beam shrinking flow and the additional form drag phenomenon, which makes the flooding phenomenon more serious. The main purpose of this research is to find the correlation between building coverage and the Manning?s coefficient n through a water flume model experiment. To probe into this issue, the Manning?s roughness adjustment is further divided into a part caused by the surface impedance and a part caused by the building impedance. Thus, building coverage can be added to the general computing grid to reflect the flooding situation with buildings. The two-dimensional inundation model, based on this research, was applied to Taichung City for an actual case simulation. The simulation result of Typhoon Kalmaegi showed that the presented model can obtain a more accurate flooding situation in urban area by considering the blockage effects of buildings and adjusting the surface roughness.