Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Water  /  Vol: 14 Par: 4 (2022)  /  Artículo
ARTÍCULO
TITULO

A Hybrid Model for Water Quality Prediction Based on an Artificial Neural Network, Wavelet Transform, and Long Short-Term Memory

Junhao Wu and Zhaocai Wang    

Resumen

Clean water is an indispensable essential resource on which humans and other living beings depend. Therefore, the establishment of a water quality prediction model to predict future water quality conditions has a significant social and economic value. In this study, a model based on an artificial neural network (ANN), discrete wavelet transform (DWT), and long short-term memory (LSTM) was constructed to predict the water quality of the Jinjiang River. Firstly, a multi-layer perceptron neural network was used to process the missing values based on the time series in the water quality dataset used in this research. Secondly, the Daubechies 5 (Db5) wavelet was used to divide the water quality data into low-frequency signals and high-frequency signals. Then, the signals were used as the input of LSTM, and LSTM was used for training, testing, and prediction. Finally, the prediction results were compared with the nonlinear auto regression (NAR) neural network model, the ANN-LSTM model, the ARIMA model, multi-layer perceptron neural networks, the LSTM model, and the CNN-LSTM model. The outcome indicated that the ANN-WT-LSTM model proposed in this study performed better than previous models in many evaluation indices. Therefore, the research methods of this study can provide technical support and practical reference for water quality monitoring and the management of the Jinjiang River and other basins.

 Artículos similares

       
 
Amr A. Abd El-Mageed, Ayoub Al-Hamadi, Samy Bakheet and Asmaa H. Abd El-Rahiem    
It is difficult to determine unknown solar cell and photovoltaic (PV) module parameters owing to the nonlinearity of the characteristic current?voltage (I-V) curve. Despite this, precise parameter estimation is necessary due to the substantial effect par... ver más
Revista: Algorithms

 
Lei Li, Xiaobao Zeng, Xinpeng Pan, Ling Peng, Yuyang Tan and Jianxin Liu    
Microseismic monitoring plays an essential role for reservoir characterization and earthquake disaster monitoring and early warning. The accuracy of the subsurface velocity model directly affects the precision of event localization and subsequent process... ver más
Revista: Applied Sciences

 
Anthony A. Amori, Olufemi P. Abimbola, Trenton E. Franz, Daran Rudnick, Javed Iqbal and Haishun Yang    
Model calibration is essential for acceptable model performance and applications. The Hybrid-Maize model, developed at the University of Nebraska-Lincoln, is a process-based crop simulation model that simulates maize growth as a function of crop and fiel... ver más
Revista: Water

 
Aravind Kolli, Qi Wei and Stephen A. Ramsey    
In this work, we explored computational methods for analyzing a color digital image of a wound and predicting (from the analyzed image) the number of days it will take for the wound to fully heal. We used a hybrid computational approach combining deep ne... ver más
Revista: Computation

 
Abdelghani Azri, Adil Haddi and Hakim Allali    
Collaborative filtering (CF), a fundamental technique in personalized Recommender Systems, operates by leveraging user?item preference interactions. Matrix factorization remains one of the most prevalent CF-based methods. However, recent advancements in ... ver más
Revista: Information