Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 23 (2020)  /  Artículo
ARTÍCULO
TITULO

Energy Absorption of Aluminium Extrusions Filled with Cellular Materials Under Axial Crushing: Study of the Interaction Effect

Javier Paz    
Miguel Costas    
Jordi Delgado    
Luis Romera and Jacobo Díaz    

Resumen

This investigation focuses on the interaction effect during the quasi-static axial crushing of circular and square thin-walled aluminium extrusions filled with polymeric foam or cork. The increment in the absorbed energy due to interactions between materials was assessed using a validated numerical model calibrated with experimental material data. Simulations were run with variable cross-section dimensions, thickness, and foam density. The results were used to adjust the parameters of design formulas to predict the average crush forces of foam- and cork-filled thin-walled tubes. The analysis of the energy dissipation per unit volume revealed that the highest increments due to the interaction between materials appeared in the foam-filled square extrusions. Energy dissipation increased with higher density foams for both cross-sections due to a stronger constraint of the aluminium walls, and thus a reduction of the folding length. Thinner tube walls also delivered a higher improvement in the energy dissipation per unit volume than those with thicker walls. The contribution of friction was also quantified and investigated.

Palabras claves

 Artículos similares

       
 
Yan Xu, Yilong Yang, He Huang, Gang Chen, Guangxing Li and Huajian Chen    
To improve the cushioning performance of soft-landing systems, a novel origami-inspired combined cushion airbag is proposed. The geometry size, initial pressure, and exhaust vent area of the cushion airbags are designed preliminarily using a theoretical ... ver más
Revista: Aerospace

 
Xin Zhou, Chenglin Tao, Xi Liang, Zeliang Liu and Huijian Li    
The aim of topology optimisation is to determine the optimal distribution of material phases within the periodic cells of a microstructure. In this paper, the density of grid points under element volume fraction is constructed to replace the finite eleme... ver más
Revista: Aerospace

 
Marco Menegozzo, Andrés Cecchini, Ryan Christian Ogle, Uday Kumar Vaidya, Isaac Acevedo-Figueroa and Jaine A. Torres-Hernández    
Honeycomb cores are widely used in the aerospace and automotive fields as a part of protective structures. Unfortunately, standard prismatic honeycomb cores offer a limited amount of energy absorption under lateral loads and suffer from degradation of th... ver más
Revista: Aerospace

 
Saiaf Bin Rayhan and Xue Pu    
Over the past two decades, aircraft crashworthiness has seen major developments, mainly with modern computing systems and commercial finite element (FE) codes. The structure and the material have been designed to absorb more kinetic energy to ensure enou... ver más
Revista: Aerospace

 
Moritz Kuhtz, Jonas Richter, Jens Wiegand, Albert Langkamp, Andreas Hornig and Maik Gude    
Carbon fibre-reinforced plastics (CFRP) are predestined for use in high-performance components due to their superior specific mechanical properties. In addition, these materials have the advantage that the material properties and in particular, the failu... ver más
Revista: Aerospace