Resumen
Liquids prepared by sequential multiple dilutions with mechanical action (highly diluted or HD solutions) are able to influence certain properties of adjacent solutions without direct contact, which is mediated by their emission in the infrared (IR) frequency range. These properties do not manifest when HD solutions are prepared in a geomagnetic field-free chamber. Here we studied the influence of a magnetic field and the intensity of mechanical treatment on the intrinsic emission of HD solutions of antibodies (Ab) to IFN? and their effect on the adjacent water. IR-emission spectra were recorded using a Fourier-transform IR spectrometer. Magnetic field treatment reduced the intrinsic emission intensity of all HD samples; non-contact incubation with HD Ab prepared with intense (iHD Ab) shaking or gentle (gHD Ab) mixing reduced the emission intensity of HD water as well. The emission intensity of intact water was affected only by iHD Ab. Pre-treatment of HD Ab with a magnetic field did not modify their non-contact effect on intact water. We confirmed the presence of a non-contact effect and determined what factors it depends on (treatment with a magnetic field and the intensity of shaking when preparing HD solutions). The intensity of water emission both in the presence of HD Ab and in the presence of a magnetic field changes in a similar way.