Resumen
The Multi-Access Edge Computing (MEC) paradigm provides a promising solution to solve the resource-insufficiency problem in user mobile devices by offloading computation-intensive and delay-sensitive computing services to nearby edge nodes. However, there is a lack of research on the efficient task offloading and mobility support when mobile users frequently move in the MEC environment. In this paper, we propose the mobile personal MEC architecture that utilizes a user?s mobile device as an MEC server (MECS) so that mobile users can receive fast response and continuous service delivery. The results show that the proposed scheme reduces the average service delay and provides efficient task offloading compared to the existing MEC scheme. In addition, the proposed scheme outperforms the existing MEC scheme because the existing mobile user devices are used as MECS, enabling low-latency service and continuous service delivery, even as the mobile user requests and task sizes increase.