Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 6 (2020)  /  Artículo
ARTÍCULO
TITULO

Multifocus Image Fusion Using a Sparse and Low-Rank Matrix Decomposition for Aviator?s Night Vision Goggle

Bo-Lin Jian    
Wen-Lin Chu    
Yu-Chung Li and Her-Terng Yau    

Resumen

This study proposed the concept of sparse and low-rank matrix decomposition to address the need for aviator?s night vision goggles (NVG) automated inspection processes when inspecting equipment availability. First, the automation requirements include machinery and motor-driven focus knob of NVGs and image capture using cameras to achieve autofocus. Traditionally, passive autofocus involves first computing of sharpness of each frame and then use of a search algorithm to quickly find the sharpest focus. In this study, the concept of sparse and low-rank matrix decomposition was adopted to achieve autofocus calculation and image fusion. Image fusion can solve the multifocus problem caused by mechanism errors. Experimental results showed that the sharpest image frame and its nearby frame can be image-fused to resolve minor errors possibly arising from the image-capture mechanism. In this study, seven samples and 12 image-fusing indicators were employed to verify the image fusion based on variance calculated in a discrete cosine transform domain without consistency verification, with consistency verification, structure-aware image fusion, and the proposed image fusion method. Experimental results showed that the proposed method was superior to other methods and compared the autofocus put forth in this paper and the normalized gray-level variance sharpness results in the documents to verify accuracy.

 Artículos similares

       
 
Ivan Volaric and Victor Sucic    
One of the frequently used classes of sparse reconstruction algorithms is based on the iterative shrinkage/thresholding procedure, in which the thresholding parameter controls a trade-off between the algorithm?s accuracy and execution time. In order to a... ver más
Revista: Information

 
Zhiyong Yang, Feng Xiong, Yaoyao Pei, Zhi Chen, Chuanhai Zhan, Enjie Hu and Guanghao Zhang    
The identification of stay cable icing is crucial for robot deicing to improve efficiency and prevent damage to stay cables. Therefore, it is significant to identify the areas and degree of icing in the images of stay cables. This study proposed a two-st... ver más
Revista: Applied Sciences

 
Li Wang, Xiaosong Yang and Jianjun Zhang    
For video style transfer, naively applying still image techniques to process a video frame-by-frame independently often causes flickering artefacts. Some works adopt optical flow into the design of temporal constraint loss to secure temporal consistency.... ver más
Revista: Applied Sciences

 
Shancheng Tang, Ying Zhang, Zicheng Jin, Jianhui Lu, Heng Li and Jiqing Yang    
The number of defect samples on the surface of aluminum profiles is small, and the distribution of abnormal visual features is dispersed, such that the existing supervised detection methods cannot effectively detect undefined defects. At the same time, t... ver más
Revista: Applied Sciences

 
Mamoon Riaz, Hammad Dilpazir, Sundus Naseer, Hasan Mahmood, Asim Anwar, Junaid Khan, Ian B. Benitez and Tanveer Ahmad    
In the past few decades, the transmission of data over an unsecure channel has resulted in an increased rate of hacking. The requirement to make multimedia data more secure is increasing day by day. Numerous algorithms have been developed to improve effi... ver más
Revista: Information