Resumen
The use of unmanned aerial vehicles (UAVs) is nowadays a standard approach in several application fields. Researches connected with these systems cover several topics and the evolution of these platforms and their applications are rapidly growing. Despite the high level of automatization reached nowadays, there is still a phase of the overall UAVs? photogrammetric pipeline that requires a high effort in terms of time and resources (i.e., the georeferencing phase). However, thanks to the availability of survey-grade GNSS (Global Navigation Satellite System) receivers embedded in the aerial platforms, it is possible to also enhance this phase of the processing by adopting direct georeferencing approaches (i.e., without using any ground control point and exploiting real time kinematic (RTK) positioning). This work investigates the possibilities offered by a multirotor commercial system equipped with a RTK-enabled GNSS receiver, focusing on the accuracy of the georeferencing phase. Several tests were performed in an ad-hoc case study exploiting different georeferencing solutions and assessing the 3D positional accuracies, thanks to a network of control points. The best approaches to be adopted in the field according to accuracy requirements of the final map products were identified and operational guidelines proposed accordingly.