Resumen
Seafloor observatories enable continuous power supply and real-time bidirectional data transmission, which marks a new way for marine environment monitoring. As in situ observation produces massive data in a constant way, the research involved with data acquisition, data transmission, data analysis, and user-oriented data application is vital to the close-loop operations of seafloor observatories. In this paper, we design and implement a sensor web prototype (ESOSW) to resolve seafloor observatory information processing in a plug-and-play way. A sensor web architecture is first introduced, which is information-oriented and structured into four layers enabling bidirectional information flow of observation data and control commands. Based on the layered architecture, the GOE Control Method and the Hot Swapping Interpretation Method are proposed as the plug-and-play mechanism for sensor control and data processing of seafloor observatory networks. ESOSW was thus implemented with the remote-control system, the data management system, and the real-time monitoring system, supporting managed sensor control and on-demand measurement. ESOSW was tested for plug-and-play enablement through a series of trials and was put into service for the East China Sea Seafloor Observation System. The experiment shows that the sensor web prototype design and implementation are feasible and could be a general reference to related seafloor observatory networks.