Application of Sliding Rehabilitation Machine in Patients with Severe Cognitive Dysfunction after Stroke
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Training Program
2.2. Outcome Measure
2.3. Statistical Analysis
3. Results
3.1. Practical Aspects of the Use of SRM
3.2. Training Program and Clinical Course
3.3. Adverse Events
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Adamson, J.; Beswick, A.; Ebrahim, S. Is stroke the most common cause of disability? J. Stroke Cerebrovasc. Dis. 2004, 13, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Langhorne, P.; Bernhardt, J.; Kwakkel, G. Stroke rehabilitation. Lancet 2011, 377, 1693–1702. [Google Scholar] [CrossRef]
- Kelly-Hayes, P.M.; Robertson, J.T.; Broderick, J.P.; Duncan, P.W.; Hershey, L.A.; Roth, E.J.; Thies, W.H.; Trombly, C.A. The American Heart Association Stroke Outcome Classification. Stroke 1998, 29, 1274. [Google Scholar] [CrossRef] [PubMed]
- Duncan, P.W. Stroke Disability. Phys. Ther. 1994, 74, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Roth, E.J.; Heinemann, A.W.; Lovell, L.L.; Harvey, R.L.; McGuire, J.R.; Diaz, S. Impairment and disability: Their relation during stroke rehabilitation. Arch. Phys. Med. Rehabil. 1998, 79, 329–335. [Google Scholar] [CrossRef]
- Michael, K.M.; Allen, J.K.; Macko, R.F. Reduced Ambulatory Activity After Stroke: The Role of Balance, Gait, and Cardiovascular Fitness. Arch. Phys. Med. Rehabil. 2005, 86, 1552–1556. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.M.; Eng, J.J. The Relationship of Lower-Extremity Muscle Torque to Locomotor Performance in People with Stroke. Phys. Ther. 2003, 83, 49–57. [Google Scholar] [PubMed]
- Cho, K.H.; Lee, J.Y.; Lee, K.J.; Kang, E.K. Factors Related to Gait Function in Post-stroke Patients. J. Phys. Ther. Sci. 2014, 26, 1941–1944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skidmore, E.R.; Whyte, E.M.; Holm, M.B.; Becker, J.T.; Butters, M.A.; Dew, M.A.; Munin, M.C.; Lenze, E.J. Cognitive and Affective Predictors of Rehabilitation Participation After Stroke. Arch. Phys. Med. Rehabil. 2010, 91, 203–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cumming, T.B.; Marshall, R.S.; Lazar, R.M. Stroke, cognitive deficits, and rehabilitation: Still an incomplete picture. Int. J. Stroke 2013, 8, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Heruti, R.J.; Lusky, A.; Dankner, R.; Ring, H.; Dolgopiat, M.; Barell, V.; Levenkrohn, S.; Adunsky, A. Rehabilitation outcome of elderly patients after a first stroke: Effect of cognitive status at admission on the functional outcome. Arch. Phys. Med. Rehabil. 2002, 83, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Bayona, N.A.; Bitensky, J.; Salter, K.; Teasell, R. The Role of Task-Specific Training in Rehabilitation Therapies. Top. Stroke Rehabil. 2005, 12, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.J. Recent trends in robot-assisted therapy environments to improve real-life functional performance after stroke. J. Neuroeng. Rehabil. 2006, 3, 29. [Google Scholar] [CrossRef] [PubMed]
- Patterson, S.L.; Forrester, L.W.; Rodgers, M.M.; Ryan, A.S.; Ivey, F.M.; Sorkin, J.D.; Macko, R.F. Determinants of Walking Function After Stroke: Differences by Deficit Severity. Arch. Phys. Med. Rehabil. 2007, 88, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Nichols, D.S. Balance Retraining After Stroke Using Force Platform Biofeedback. Phys. Ther. 1997, 77, 553–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byun, S.D.; Jung, T.D.; Kim, C.H.; Lee, Y.S. Effects of the sliding rehabilitation machine on balance and gait in chronic stroke patients—A controlled clinical trial. Clin. Rehabil. 2011, 25, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-S.; Kim, W.-B.; Park, J.-W. The effect of exercise using a sliding rehabilitation machine on the gait function of children with cerebral palsy. J. Phys. Ther. Sci. 2014, 26, 1667–1669. [Google Scholar] [CrossRef] [PubMed]
- Rabadi, M.H.; Rabadi, F.M.; Edelstein, L.; Peterson, M. Cognitively impaired stroke patients do benefit from admission to an acute rehabilitation unit. Arch. Phys. Med. Rehabil. 2008, 89, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Bour, A.; Rasquin, S.; Boreas, A.; Limburg, M.; Verhey, F. How predictive is the MMSE for cognitive performance after stroke? J. Neurol. 2010, 257, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Wirz, M.; Müller, R.; Bastiaenen, C. Falls in persons with spinal cord injury: Validity and reliability of the Berg Balance Scale. Neurorehabilit. Neural Repair 2010, 24, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.Y.; Park, B.K.; Shin, H.S.; Kang, Y.K.; Pyun, S.B.; Paik, N.J.; Kim, S.H.; Kim, T.H.; Han, T.R. Development of the Korean version of Modified Barthel Index (K-MBI): Multi-center study for subjects with stroke. J. Korean Acad. Rehabil. Med. 2007, 31, 283–297. [Google Scholar]
- Lam, T.; Noonan, V.K.; Eng, J.J. A systematic review of functional ambulation outcome measures in spinal cord injury. Spinal Cord 2008, 46, 246. [Google Scholar] [CrossRef] [PubMed]
- Aitkens, S.; Lord, J.; Bernauer, E.; Fowler, W.M.; Lieberman, J.S.; Berck, P. Relationship of manual muscle testing to objective strength measurements. Muscle Nerve 1989, 12, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Hornby, T.G.; Campbell, D.D.; Kahn, J.H.; Demott, T.; Moore, J.L.; Roth, H.R. Enhanced gait-related improvements after therapist-versus robotic-assisted locomotor training in subjects with chronic stroke: A randomized controlled study. Stroke 2008, 39, 1786–1792. [Google Scholar] [CrossRef] [PubMed]
- Duncan, P.W.; Sullivan, K.J.; Behrman, A.L.; Azen, S.P.; Wu, S.S.; Nadeau, S.E.; Dobkin, B.H.; Rose, D.K.; Tilson, J.K.; Cen, S. Body-weight–supported treadmill rehabilitation after stroke. N. Engl. J. Med. 2011, 364, 2026–2036. [Google Scholar] [CrossRef] [PubMed]
- Tatemichi, T.K.; Desmond, D.W.; Stern, Y.; Paik, M.; Sano, M.; Bagiella, E. Cognitive impairment after stroke: Frequency, patterns, and relationship to functional abilities. J. Neurol. Neurosurg. Psychiatry 1994, 57, 202. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.H.; Kim, Y.-H. Robot-assisted Therapy in Stroke Rehabilitation. J. Stroke 2013, 15, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Hesse, S.; Mehrholz, J.; Werner, C. Robot-assisted upper and lower limb rehabilitation after stroke: Walking and arm/hand function. Dtsch. Arztebl. Int. 2008, 105, 330–336. [Google Scholar] [PubMed]
- Lovely, R.G.; Gregor, R.J.; Roy, R.R.; Edgerton, V.R. Effects of training on the recovery of full-weight-bearing stepping in the adult spinal cat. Exp. Neurol. 1986, 92, 421–435. [Google Scholar] [CrossRef]
- Dean, C.M.; Richards, C.L.; Malouin, F. Task-related circuit training improves performance of locomotor tasks in chronic stroke: A randomized, controlled pilot trial. Arch. Phys. Med. Rehabil. 2000, 81, 409–417. [Google Scholar] [CrossRef] [PubMed]
Variables | |
---|---|
Patients (number) | 30 |
Age (years) | 74.3 ± 8.5 |
Sex (Male/Female) | 12:18 |
Location(Rt./Lt.) | 10:20 |
Training day | 29.2 ± 7.9 |
Time from stroke to inclusion (days) | 15.8 ± 6.0 |
K-MMSE | 1.6 ± 2.6 |
NIHSS | 16.9 ± 6.0 |
Clinical parameters | Baseline | Discharge | p |
---|---|---|---|
Angle of inclination | 6.7 ± 4.6 | 12.6 ± 7.3 * | 0.000 |
BBS | 5.1 ± 9.1 | 15.4 ± 17.4 * | 0.006 |
K-MBI | 8.0 ± 9.2 | 28.2 ± 22.8 * | 0.000 |
MMTHF | 1.20 ± 1.24 | 1.70 ± 1.32 | 0.136 |
MMTKE | 1.20 ± 1.32 | 1.67 ± 1.54 | 0.213 |
MMTADF | 1.13 ± 1.30 | 1.37 ± 1.45 | 0.515 |
MMTGTDF | 1.13 ± 1.30 | 1.37 ± 1.45 | 0.515 |
MMTAPF | 1.17 ± 1.29 | 1.57 ± 1.43 | 0.260 |
Reasons | |
---|---|
Knee pain | 5 |
Sleep disturbance or depression | 7 |
Schedule error | 3 |
Dizziness | 3 |
Total | 18 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, A.R.; Lee, Y.-S. Application of Sliding Rehabilitation Machine in Patients with Severe Cognitive Dysfunction after Stroke. Appl. Sci. 2019, 9, 927. https://doi.org/10.3390/app9050927
Kim AR, Lee Y-S. Application of Sliding Rehabilitation Machine in Patients with Severe Cognitive Dysfunction after Stroke. Applied Sciences. 2019; 9(5):927. https://doi.org/10.3390/app9050927
Chicago/Turabian StyleKim, Ae Ryoung, and Yang-Soo Lee. 2019. "Application of Sliding Rehabilitation Machine in Patients with Severe Cognitive Dysfunction after Stroke" Applied Sciences 9, no. 5: 927. https://doi.org/10.3390/app9050927
APA StyleKim, A. R., & Lee, Y.-S. (2019). Application of Sliding Rehabilitation Machine in Patients with Severe Cognitive Dysfunction after Stroke. Applied Sciences, 9(5), 927. https://doi.org/10.3390/app9050927