Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Water  /  Vol: 16 Par: 5 (2024)  /  Artículo
ARTÍCULO
TITULO

Monitoring Water Quality Parameters in Small Rivers Using SuperDove Imagery

Katerina Vatitsi    
Sofia Siachalou    
Dionissis Latinopoulos    
Ifigenia Kagalou    
Christos S. Akratos and Giorgos Mallinis    

Resumen

Freshwater ecosystems provide an array of provisioning, regulating/maintenance, and cultural ecosystem services. Despite their crucial role, freshwater ecosystems are exceptionally vulnerable due to changes driven by both natural and human factors. Water quality is essential for assessing the condition and ecological health of freshwater ecosystems, and its evaluation involves various water quality parameters. Remote sensing has become an efficient approach for retrieving and mapping these parameters, even in optically complex waters such as small rivers. This study specifically focuses on modelling two non-optically active water quality parameters, dissolved oxygen (DO) and electrical conductivity (EC), by integrating 3 m PlanetScope satellite imagery with data from real-time in situ remote monitoring sensors across two small rivers in Thrace, Northeast Greece. We employed three different experimental setups using a support vector regression (SVR) algorithm: ?Multi-seasonal by Individual Sensor? (M-I-S) for individual sensor analysis across two seasons, ?Multi-seasonal?All Sensors? (M-A-S) integrating data across all seasons and sensors, and ?Seasonal?All Sensors? (S-A-S) focusing on per-season sensor data. The models incorporating multiple seasons and all in situ sensors resulted in R2 values of 0.549 and 0.657 for DO and EC, respectively. A multi-seasonal approach per in situ sensor resulted in R2 values of 0.885 for DO and 0.849 for EC. Meanwhile, the seasonal approach, using all in situ sensors, achieved R2 values of 0.805 for DO and 0.911 for EC. These results underscore the significant potential of combining PlanetScope data and machine learning to model these parameters and monitor the condition of ecosystems over small river surfaces.

 Artículos similares

       
 
Catalina Iticescu, Lucian P. Georgescu, Gabriel Murariu, Catalina Topa, Mihaela Timofti, Violeta Pintilie and Maxim Arseni    
The aim of the present paper is to quantify water quality in the Lower Danube Region by using a series of multivariate techniques and the Water Quality Index (WQI). In this paper were measured 18 parameters upstream and downstream the city of Galati alon... ver más
Revista: Water

 
Viktoriya Tsyganskaya, Sandro Martinis and Philip Marzahn    
Synthetic Aperture Radar (SAR) is particularly suitable for large-scale mapping of inundations, as this tool allows data acquisition regardless of illumination and weather conditions. Precise information about the flood extent is an essential foundation ... ver más
Revista: Water

 
Saher Ayyad, Islam S. Al Zayed, Van Tran Thi Ha and Lars Ribbe    
Monitoring of crop water consumption, also known as actual evapotranspiration (ETa), is crucial for the prudent use of limited freshwater resources. Remote-sensing-based algorithms have become a popular approach for providing spatio-temporal information ... ver más
Revista: Water

 
Yusef Kianpoor Kalkhajeh, Bahman Jabbarian Amiri, Biao Huang, Azad Henareh Khalyani, Wenyou Hu, Hongjian Gao and Michael L. Thompson    
Although phosphorus (P) is an essential nutrient for biological productivity, it can cause freshwater degradation when present at fairly low concentrations. Monitoring studies using continuous sampling is crucial for documenting P dynamics in freshwater ... ver más
Revista: Water

 
Francesco Fusco, Pantaleone De Vita, Benjamin B. Mirus, Rex L. Baum, Vincenzo Allocca, Rita Tufano, Enrico Di Clemente and Domenico Calcaterra    
On the 4th and 5th of March 2005, about 100 rainfall-induced landslides occurred along volcanic slopes of Camaldoli Hill in Naples, Italy. These started as soil slips in the upper substratum of incoherent and welded volcaniclastic deposits, then evolved ... ver más
Revista: Water