Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Algorithms  /  Vol: 16 Par: 5 (2023)  /  Artículo
ARTÍCULO
TITULO

Time-Series Forecasting of Seasonal Data Using Machine Learning Methods

Vadim Kramar and Vasiliy Alchakov    

Resumen

The models for forecasting time series with seasonal variability can be used to build automatic real-time control systems. For example, predicting the water flowing in a wastewater treatment plant can be used to calculate the optimal electricity consumption. The article describes a performance analysis of various machine learning methods (SARIMA, Holt-Winters Exponential Smoothing, ETS, Facebook Prophet, XGBoost, and Long Short-Term Memory) and data-preprocessing algorithms implemented in Python. The general methodology of model building and the requirements of the input data sets are described. All models use actual data from sensors of the monitoring system. The novelty of this work is in an approach that allows using limited history data sets to obtain predictions with reasonable accuracy. The implemented algorithms made it possible to achieve an R-Squared accuracy of more than 0.95. The forecasting calculation time is minimized, which can be used to run the algorithm in real-time control and embedded systems.

 Artículos similares

       
 
Fahim Sufi    
In the face of escalating cyber threats that have contributed significantly to global economic losses, this study presents a comprehensive dataset capturing the multifaceted nature of cyber-attacks across 225 countries over a 14-month period from October... ver más
Revista: Information

 
Louis Closson, Christophe Cérin, Didier Donsez and Jean-Luc Baudouin    
This paper aims to provide discernment toward establishing a general framework, dedicated to data analysis and forecasting in smart buildings. It constitutes an industrial return of experience from an industrialist specializing in IoT supported by the ac... ver más
Revista: Information

 
Yiyuan Xu, Jianhui Zhao, Biao Wan, Jinhua Cai and Jun Wan    
Flood forecasting helps anticipate floods and evacuate people, but due to the access of a large number of data acquisition devices, the explosive growth of multidimensional data and the increasingly demanding prediction accuracy, classical parameter mode... ver más
Revista: Water

 
Sai Wang, Guoping Fu, Yongduo Song, Jing Wen, Tuanqi Guo, Hongjin Zhang and Tuantuan Wang    
The development of intelligent oceans requires exploration and an understanding of the various characteristics of the oceans. The emerging Internet of Underwater Things (IoUT) is an extension of the Internet of Things (IoT) to underwater environments, an... ver más

 
Zekâi Sen    
In the open literature, there are numerous studies on the normal and extreme (flood and drought) behavior of wet and dry periods based on the understanding of the standard precipitation index (SPI), which provides a series of categorizations by consideri... ver más
Revista: Water