Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Hydrology  /  Vol: 9 Par: 10 (2022)  /  Artículo
ARTÍCULO
TITULO

Downscaling WGHM-Based Groundwater Storage Using Random Forest Method: A Regional Study over Qazvin Plain, Iran

Soroush Zarghami Dastjerdi    
Ehsan Sharifi    
Rozita Rahbar and Bahram Saghafian    

Resumen

Climate change, urbanization, and a growing population have led to a rapid increase in groundwater (GW) use. As a result, monitoring groundwater changes is essential for water managers and decision-makers. Due to the lack of reliable and insufficient in situ information, remote sensing and hydrological models may be counted as alternative sources to assess GW storage changes on regional and global scales. However, often, these hydrological models have a low spatial resolution for water-related applications on a small scale. Therefore, the main purpose of this study is to downscale the GW storage anomaly (GWSA) of the WaterGAP Global Hydrology Model (WGHM) from a coarse (0.5 degrees) to a finer spatial resolution (0.1 degrees) using fine spatial resolution auxiliary datasets (0.1 degrees), such as evaporation (E), surface (SRO), subsurface runoff (SSRO), snow depth (SD), and volumetric soil water (SWVL), from the ERA5-Land model, as well as the global precipitation (Pre) measurement (GPM-IMERG) product. The Qazvin Plain in central Iran was selected as the case study region, as it faces a severe decline in GW resources. Different statistical regression models were tested for the GWSA downscaling to find the most suitable method. Moreover, since different water budget components (such as precipitation or storage) are known to have temporal lead or lag relative to each other, the approach also incorporates a time shift factor. The most suitable regression model with the highest skill score during the training-validation was selected and applied to predict the final 0.1-degree GWSA. The downscaled results showed high agreement with the in situ groundwater levels over the Qazvin Plain on both interannual and monthly time scales, with a correlation coefficient of 0.989 and 0.62, respectively. Moreover, the downscaled product represents clear proof that the developed downscaling technique is able to learn from high-resolution auxiliary data to capture GWSA features at a higher spatial resolution. The major benefit of the proposed method lies in the utilization of only the auxiliary data that are available with global coverage and are free of charge, while not requiring in situ GW records for training or prediction. Therefore, the proposed downscaling technique can potentially be applied at a global scale and to aquifers in other geographical regions.

 Artículos similares

       
 
Andrea Momblanch, Ian P. Holman and Sanjay K. Jain    
Global change is expected to have a strong impact in the Himalayan region. The climatic and orographic conditions result in unique modelling challenges and requirements. This paper critically appraises recent hydrological modelling applications in Himala... ver más
Revista: Water

 
Valentina Gallina, Silvia Torresan, Alex Zabeo, Jonathan Rizzi, Sandro Carniel, Mauro Sclavo, Lisa Pizzol, Antonio Marcomini and Andrea Critto    
Coastal erosion is an issue of major concern for coastal managers and is expected to increase in magnitude and severity due to global climate change. This paper analyzes the potential consequences of climate change on coastal erosion (e.g., impacts on be... ver más
Revista: Water

 
Julio Garrote, Ignacio Gutiérrez-Pérez and Andrés Díez-Herrero    
Calibration and validation of flood risk maps at a national or a supra-national level remains a problematic aspect due to the limited information available to carry out these tasks. However, this validation is essential to define the representativeness o... ver más
Revista: Water

 
Xiang Liu, Jin Zhang, Wenqing Shi, Min Wang, Kai Chen and Li Wang    
Understanding the drivers of macroinvertebrate community structure is fundamental for adequately controlling pollutants and managing ecosystems under global change. In this study, the abundance and diversity of benthic macroinvertebrates, as well as thei... ver más
Revista: Water

 
Qingyan Wang, Longzhi Sun and Xuan Yang    
Rice yield is essential to global food security under increasingly frequent and severe climate change events. Spatial analysis of rice yields becomes more critical for regional action to ensure yields and reduce climate impacts. However, the understandin... ver más