Resumen
Granular metallic iron (gFe0) materials have been widely used for eliminating a wide range of pollutants from aqueous solutions over the past three decades. However, the intrinsic reactivity of gFe0 is rarely evaluated and existing methods for such evaluations have not been standardized. The aim of the present study was to develop a simple spectrophotometric method to characterize the intrinsic reactivity of gFe0 based on the extent of iron dissolution in an ascorbic acid (AA?0.002 M or 2 mM) solution. A modification of the ethylenediaminetetraacetic acid method (EDTA method) is suggested for this purpose. Being an excellent chelating agent for FeII and a reducing agent for FeIII, AA sustains the oxidative dissolution of Fe0 and the reductive dissolution of FeIII oxides from gFe0 specimens. In other words, Fe0 dissolution to FeII ions is promoted while the further oxidation to FeIII ions is blocked. Thus, unlike the EDTA method that promotes Fe0 oxidation to FeIII ions, the AA method promotes only the formation of FeII species, despite the presence of dissolved O2. The AA test is more accurate than the EDTA test and is considerably less expensive. Eight selected gFe0 specimens (ZVI1 through ZVI8) with established diversity in intrinsic reactivity were tested in parallel batch experiments (for 6 days) and three of these specimens (ZVI1, ZVI3, ZVI5) were further tested for iron leaching in column experiments (for 150 days). Results confirmed the better suitability (e.g., accuracy in assessing Fe0 dissolution) of the AA test relative to the EDTA test as a powerful screening tool to select materials for various field applications. Thus, the AA test should be routinely used to characterize and rationalize the selection of gFe0 in individual studies.