Resumen
This paper reviews the history of conceptual and numerical modelling of hard rock coasts (mean annual cliff erosion typically < 1 mm up to 1 cm) and its use in studying coastal evolution in the past and predicting the impact of the changing climate, and especially rising sea level, in the future. Most of the models developed during the last century were concerned with the development and morphology of shore-normal coastal profiles, lacking any sediment cover, in non-tidal environments. Some newer models now consider the plan shape of rock coasts, and models often incorporate elements, such as the tidally controlled expenditure of wave energy within the intertidal zone, beach morphodynamics, weathering, changes in relative sea level, and the role of wave refraction and sediment accumulation. Despite these advances, the lack of field data, combined with the inherent complexity of rock coasts and uncertainty over their age, continue to inhibit attempts to develop more reliable models and to verify their results.