Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Buildings  /  Vol: 13 Par: 9 (2023)  /  Artículo
ARTÍCULO
TITULO

Machine Learning-Based Cost-Effective Smart Home Data Analysis and Forecasting for Energy Saving

Sanguk Park    

Resumen

This study aims to enable cost-effective Internet of Things (IoT) system design by removing redundant IoT sensors through the correlation analysis of sensing data collected in a smart home environment. This study also presents a data analysis and prediction technology that enables meaningful inference through correlation analysis of data from different heterogeneous IoT sensors installed inside a smart home for energy efficiency. An intelligent service model that can be implemented based on a machine learning algorithm in a smart home environment is proposed. Herein, seven types of sensor data are collected and classified into sets of input data (six environmental data) and target data (power data of HVAC). By using the six new input data, the power data can be predicted by the artificial intelligence model. The model performance was measured using RMSE, and the gradient-boosting regressor (gb) model performed the best, with an RMSE of 22.29. Also, the importance of sensor data is extracted through correlation analysis, and sensors with low importance are removed according to the importance of sensor values. This process can reduce costs by 13%, thereby providing a design guide for a cost-effective IoT system.

 Artículos similares

       
 
Cai Wu, Yanwen Wang, Jiong Wang, Menno-Jan Kraak and Mingshu Wang    
This study introduces a machine learning-based framework for mapping street patterns in urban morphology, offering an objective, scalable approach that transcends traditional methodologies. Focusing on six diverse cities, the research employed supervised... ver más

 
Hassan Khazane, Mohammed Ridouani, Fatima Salahdine and Naima Kaabouch    
With the rapid advancements and notable achievements across various application domains, Machine Learning (ML) has become a vital element within the Internet of Things (IoT) ecosystem. Among these use cases is IoT security, where numerous systems are dep... ver más
Revista: Future Internet

 
Minghao Liu, Jianxiang Wang, Qingxi Luo, Lingbo Sun and Enming Wang    
Exploring spatial anisotropy features and capturing spatial interactions during urban change simulation is of great significance to enhance the effectiveness of dynamic urban modeling and improve simulation accuracy. Addressing the inadequacies of curren... ver más

 
Mohammed Suleiman Mohammed Rudwan and Jean Vincent Fonou-Dombeu    
Ontology merging is an important task in ontology engineering to date. However, despite the efforts devoted to ontology merging, the incorporation of relevant features of ontologies such as axioms, individuals and annotations in the output ontologies rem... ver más

 
Faizi Fifita, Jordan Smith, Melissa B. Hanzsek-Brill, Xiaoyin Li and Mengshi Zhou    
The spread of fake news related to COVID-19 is an infodemic that leads to a public health crisis. Therefore, detecting fake news is crucial for an effective management of the COVID-19 pandemic response. Studies have shown that machine learning models can... ver más