Resumen
In this paper, a planar air-bearing test bed with unmanned aerial vehicles (UAV) was used to test a microsatellite motion control system. The UAV mock-ups were controlled by four ventilator actuators that imitated the satellite thrusters and provided the required acceleration vector in the horizontal plane, and torque along the vertical direction. The mock-ups moved almost without friction along the planar air-bearing test bed due to the air cushion between the test bed surface and the flat mock-up base. The motion of the mock-ups motion imitated the motion of satellites in the orbital plane. The problem of space debris can be solved using special microsatellite missions able to dock to space debris objects and change their orbit. In this paper, two control algorithms based on the virtual potentials approach and the State Dependent Ricatti Equation (SDRE) controller, were proposed for docking to a non-cooperative space debris object. The algorithms were tested in a laboratory facility, and the results are presented and analyzed, including their main features demonstrated during the laboratory study. It was shown that the SDRE-based control was faster, although the virtual potential-based control required less characteristic velocity.