Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Applied System Innovation  /  Vol: 5 Par: 6 (2022)  /  Artículo
ARTÍCULO
TITULO

Prediction of Depression for Undergraduate Students Based on Imbalanced Data by Using Data Mining Techniques

Warawut Narkbunnum and Kittipol Wisaeng    

Resumen

Depression is becoming one of the most prevalent mental disorders. This study looked at five different classification techniques to predict the risk of students? depression based on their socio-demographics, internet addiction, alcohol use disorder, and stress levels to see if they were at risk for depression. We propose a combined sampling technique to improve the performance of the imbalanced classification of university student depression data. In addition, three different feature selection methods, Correlation, Gain ratio, and Relief feature selection algorithms, were used for extracting the most relevant features from the dataset. In our experimental results, we discovered that combining the bootstrapping technique with the Relief selection technique under sampling methods enabled the generation of a relatively well-balanced dataset on depression without significant loss of information. The results show that the overall accuracy in the risk of depression prediction data was 93.16%, outperforming the individual sampling technique. In addition, other evaluation metrics, including precision, recall, and area under the curve (AUC), were calculated for various models to determine the most effective model for predicting risk of depression.

 Artículos similares

       
 
Juan Ma, Qiang Yang, Mingzhi Zhang, Yao Chen, Wenyi Zhao, Chengyu Ouyang and Dongping Ming    
Accurately predicting landslide deformation based on monitoring data is key to successful early warning of landslide disasters. Landslide displacement?time curves offer an intuitive reflection of the landslide motion process and deformation predictions o... ver más
Revista: Water

 
Haibo Chu, Zhuoqi Wang and Chong Nie    
Accurate and reliable monthly streamflow prediction plays a crucial role in the scientific allocation and efficient utilization of water resources. In this paper, we proposed a prediction framework that integrates the input variable selection method and ... ver más
Revista: Water

 
Sajjad E. Rasheed, Duaa Al-Jeznawi, Musab Aied Qissab Al-Janabi and Luís Filipe Almeida Bernardo    
The structural stability of pipe pile foundations under seismic loading stands as a critical concern, demanding an accurate assessment of the maximum settlement. Traditionally, this task has been addressed through complex numerical modeling, accounting f... ver más

 
Atefe Sedaghat, Homayoon Arbabkhah, Masood Jafari Kang and Maryam Hamidi    
This research introduces an online system for monitoring maritime traffic, aimed at tracking vessels in water routes and predicting their subsequent locations in real time. The proposed framework utilizes an Extract, Transform, and Load (ETL) pipeline to... ver más

 
Hu Cai, Jiafu Wan and Baotong Chen    
Traditional capacity forecasting algorithms lack effective data interaction, leading to a disconnection between the actual plan and production. This paper discusses the multi-factor model based on a discrete manufacturing workshop and proposes a digital ... ver más
Revista: Applied Sciences