Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 15 (2020)  /  Artículo
ARTÍCULO
TITULO

Machine-Learning Based Optimal Seismic Control of Structure with Active Mass Damper

Pei-Ching Chen and Kai-Yi Chien    

Resumen

In recent years, optimal control which minimizes a cost function formulated by weighted states and control inputs has been applied to the seismic control of structures. Optimal control requires structural states which may not be available in real application; therefore, state estimation is essential, which inevitably takes additional computation time. However, time delay and state estimate error could affect the control performance. In this study, a multilayer perceptron (MLP) model and an autoregressive with exogenous inputs (ARX) model in machine learning are applied to learn the control force generated from a linear-quadratic regulator (LQR) with weighting matrices optimized by applying symbiotic organisms search algorithm. A 10-story building is adopted as a benchmark model for training and validation of the MLP and ARX models. Numerical simulation results demonstrate that the MLP and ARX models are able to emulate the LQR control force from the acceleration response directly, indicating that state estimation is not essential for optimal control implementation in real application. Finally, the machine-learning based approach is experimentally validated by conducting shake table testing in the laboratory in which the structural model is controlled by an active mass damper. The experimental results and structural control performance of the MLP and ARX models are compared with those of the LQR with a Kalman filter.

 Artículos similares

       
 
Max Schrötter, Andreas Niemann and Bettina Schnor    
Over the last few years, a plethora of papers presenting machine-learning-based approaches for intrusion detection have been published. However, the majority of those papers do not compare their results with a proper baseline of a signature-based intrusi... ver más
Revista: Information

 
Artur Chudzik and Andrzej W. Przybyszewski    
Neurodegenerative diseases (NDs), including Parkinson?s and Alzheimer?s disease, pose a significant challenge to global health, and early detection tools are crucial for effective intervention. The adaptation of online screening forms and machine learnin... ver más
Revista: Applied Sciences

 
Saikat Das, Mohammad Ashrafuzzaman, Frederick T. Sheldon and Sajjan Shiva    
The distributed denial of service (DDoS) attack is one of the most pernicious threats in cyberspace. Catastrophic failures over the past two decades have resulted in catastrophic and costly disruption of services across all sectors and critical infrastru... ver más
Revista: Algorithms

 
Donghyuk Kum, Jichul Ryu, Yongchul Shin, Jihong Jeon, Jeongho Han, Kyoung Jae Lim and Jonggun Kim    
This study accounted for the importance of daily expansion flow data in compensating for insufficient flow data in a watershed. In particular, the 8-day interval flow measurement data (intermittent monitoring data) could cause uncertainty in the high- or... ver más
Revista: Water

 
Sufyan Danish, Asfandyar Khan, L. Minh Dang, Mohammed Alonazi, Sultan Alanazi, Hyoung-Kyu Song and Hyeonjoon Moon    
Bioinformatics and genomics are driving a healthcare revolution, particularly in the domain of drug discovery for anticancer peptides (ACPs). The integration of artificial intelligence (AI) has transformed healthcare, enabling personalized and immersive ... ver más
Revista: Information