Resumen
Environmentally friendly and formaldehyde-free laminated veneer lumber (LVL) was manufactured using geopolymer constituents as binder. The main aim of the study was to improve the bonding quality between the geopolymer binder and the wood constituents. To this end, the effect of various additives (phenol flakes, conventional silica fume, and grafted silica fume with 3-aminopropyltriethoxysilane (APTES)) in the geopolymer binder features were explored via gel time and viscosity measurements, differential scanning calorimetry (DSC), and Fourier transom infrared spectroscopy. The mechanical properties (shear, bending, and compression) of LVL panels were also determined. Results showed that adding both types of silica fume had a positive impact on the geopolymer binder features. The formation of an alkaline aluminosilicate network was proven by observing the characteristics peaks of geopolymer binder at about 683 and 970 cm-1. A peak temperature of about 98 °C was determined for the geopolymer binder curing via DSC analysis. The mechanical properties were the highest for LVL panels made of geopolymer binder with grafted silica fume. It is feasible that the APTES used as grafting agent created a better bonding mechanism with superficial wood cells. In summary, the produced LVL panel showed good properties, but it still needs to be further improved to reach the required levels for use in interior and humid application.