Resumen
The increased antibiotic pollutants in aquatic environments pose severe threats on microbial ecology due to their extensive distribution and antibacterial properties. A total of 16 antibiotics including fluoroquinolones (FQs) (ofloxacin (OFX), ciprofloxacin (CFX), norfloxacin (NFX)), Sulfonamides (SAs) (sulfamonomethoxine (SMM), sulfadiazine (SDZ), sulfaquinoxaline (SQX)), Tetracyclines (TCs) (tetracycline (TC), doxycycline (DC)), ß-lactams (penicillin G (PEN G), penicillin V (PEN V), cefalexin (LEX)), Macrolides (MLs) (erythromycin-H2O (ETM), tylosin (TYL)) and other antibiotics (Polymix-B (POL), Vancomycin (VAN), Lincomycin (LIN)) were detected in the surface water of the Qingcaosha Reservoir. Multivariate statistical analysis indicated that both water quality and physicochemical indexes have less contributions on variations of these antibiotics, suggesting the concentrations of antibiotics inside the reservoir are mainly affected by upstream runoff and anthropic activity along the river. Antibiotics including TYL, PEN G and ETM showed significant correlations with variations of bacterial community composition, and closely connected with various gram-negative bacteria in co-occurrence/exclusion patterns of the network, suggesting these bacterial taxa play important roles in the course of migration and transformation of related antibiotics. In conclusion, further research is required to evaluate the potential risk of genetic transfer of resistance to related bacteria induced by long-term exposure to low levels of antibiotics in the environment.