Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Coatings  /  Vol: 11 Par: 5 (2021)  /  Artículo
ARTÍCULO
TITULO

Pseudo-Planar Organic Heterojunctions by Sequential Printing of Quasi-Miscible Inks

Ana-Gianina Gereanu    
Camillo Sartorio    
Aurelio Bonasera    
Giuliana Giuliano    
Sebastiano Cataldo    
Michelangelo Scopelliti    
Giuseppe Arrabito and Bruno Pignataro    

Resumen

This work deals with the interfacial mixing mechanism of picoliter (pL)-scale droplets produced by sequential inkjet printing of organic-based inks onto ITO/PET surfaces at a moderately high Weber number (~101). Differently from solution dispensing processes at a high Bond number such as spin coating, the deposition by inkjet printing is strictly controlled by droplet velocity, ink viscosity, and surface tension. In particular, this study considers the interfacial mixing of droplets containing the most investigated donor/acceptor couple for organic solar cells, i.e., poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl-C61-butyric acid methyl ester (PCBM), showing how low-viscosity and low-surface energy inks can be leveraged for the fabrication of an interface suitable for a pseudo-planar heterojunction (pseudo-PHJ) organic solar cell (OSC) that is a convenient alternative to a bulk heterojunction (BHJ) OSC. The resulting thin-film morphology and molecular organization at the P3HT/PCBM interface are investigated, highlighting the roles of dissolution-driven molecular recirculation. This report represents a first step toward the sequential inkjet printing fabrication of pseudo-PHJ OSCs at low consumption of solvents/chemicals.