Redirigiendo al acceso original de articulo en 18 segundos...
ARTÍCULO
TITULO

Dynamics Simulation of Grasping Process of Underwater Vehicle-Manipulator System

Zongyu Chang    
Yang Zhang    
Zhongqiang Zheng    
Lin Zhao and Kunfan Shen    

Resumen

Underwater vehicle-manipulator system (UVMS) can be applied to fulfill different complex underwater tasks such as grasping, drilling, sampling, etc. It is widely used in the field of oceanographic research, marine exploration, military, and commercial applications. In this paper, the dynamic simulation of UVMS is presented in the process of grasping an object. First, the dynamic model of UVMS, which considers the change of the load of manipulator when the end effector of manipulator grasps the object, is developed. To compare different conditions, numerical simulation of grasping processes without/with vehicle attitude control are carried out. The simulation results show that the coupling dynamics between the vehicle and the manipulator in the grasping process are clearly illustrated. It deteriorates the positioning accuracy of the end effector of the manipulator and is harmful to underwater precision operations. The tracking position error of end effector without vehicle control is large and UVMS cannot complete the grasping task under this condition. Vehicle control can compensate the motion of the vehicle due to the coupling effect caused by the motion of the manipulator. This study will contribute to underwater operation mission for UVMS with floating base.

 Artículos similares

       
 
Anthony A. Amori, Olufemi P. Abimbola, Trenton E. Franz, Daran Rudnick, Javed Iqbal and Haishun Yang    
Model calibration is essential for acceptable model performance and applications. The Hybrid-Maize model, developed at the University of Nebraska-Lincoln, is a process-based crop simulation model that simulates maize growth as a function of crop and fiel... ver más
Revista: Water

 
Péter Bauer and Mihály Nagy    
Research and industrial application can require custom high-level controllers for industrial drones. Thus, this paper presents the high-fidelity dynamic and control model identification of the DJI M600 Pro hexacopter. This is a widely used multicopter in... ver más
Revista: Aerospace

 
Dayana Carolina Chalá, Edgar Quiñones-Bolaños and Mehrab Mehrvar    
Land subsidence is a global challenge that enhances the vulnerability of aquifers where climate change and driving forces are occurring simultaneously. To comprehensively analyze this issue, integrated modeling tools are essential. This study advances th... ver más
Revista: Water

 
Zhiyuan Hu, Peng Yu, Guohua Xu, Yongjie Shi, Feng Gu and Aijun Zou    
Tiltrotors permit aircrafts to operate vertically with lift, yet convert to ordinary forward flight with thrust. The challenge is to design a tiltrotor blade yielding maximum lift and thrust that converts smoothly without losing integrity or efficiency. ... ver más
Revista: Aerospace

 
Romain Amyot, Noriyuki Kodera and Holger Flechsig    
Simulation of atomic force microscopy (AFM) computationally emulates experimental scanning of a biomolecular structure to produce topographic images that can be correlated with measured images. Its application to the enormous amount of available high-res... ver más
Revista: Algorithms