Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 2 (2023)  /  Artículo
ARTÍCULO
TITULO

Finite Element Modeling of the Fingers and Wrist Flexion/Extension Effect on Median Nerve Compression

Saveliy Peshin    
Yulia Karakulova and Alex G. Kuchumov    

Resumen

Carpal tunnel syndrome (CTS) is the most common pathology among disorders of the peripheral nervous system related to median nerve compression. To our knowledge, there are limited data on the effect of tendon movement on median nerve compression. This study focuses on the understanding of the carpal syndrome by simulating the impact of tendons movement caused by fingers flexion by Finite Element Analysis. Therefore, such modeling is the step toward the development of a personalized technique for value determining median nerve compression. Open-source MRI of the human right hand was used to build patient-specific phalanges of the fingers. Carpal tunnel soft tissues were considered as hyper-elastic materials, while bone structures were considered as elastic ones. The final finite-element model had 40 solid bodies which contacted the joint. Results were obtained for four cases of wrist movements: finger flexion, hand flexion/extension, and wrist extension with subsequent by finger flexion. Compression of the median nerve ranged from 129 Pa to 227 Pa. The results show that compression of the median nerve occurs faster during wrist flexion than during wrist extension or finger flexion. A decrease in compression during finger flexion was noticed with wrist extension followed by finger flexion.

 Artículos similares

       
 
Cesare Patuelli, Enrico Cestino and Giacomo Frulla    
Vibration analysis of wing-box structures is a crucial aspect of the aeronautic design to avoid aeroelastic effects during normal flight operations. The deformation of a wing structure can induce nonlinear couplings, causing a different dynamic behavior ... ver más
Revista: Aerospace

 
Xingxing Huang, Kang Han, Zhenyu Lu, Shuncheng Zhang and Liang Guo    
In order to reduce the influence of temperature deformation of large-size body-mounted radiators on the observation accuracy of space station telescopes and adapt to launch vibration loads, this paper proposes a floating combination stress release mechan... ver más
Revista: Aerospace

 
George Tzoumakis, Konstantinos Fotopoulos and George Lampeas    
Future liquid hydrogen-powered aircraft requires the design and optimization of a large number of systems and subsystems, with cryogenic tanks being one of the largest and most critical. Considering previous space applications, these tanks are usually st... ver más
Revista: Aerospace

 
Grigorios Kostopoulos, Konstantinos Stamoulis, Vaios Lappas and Stelios K. Georgantzinos    
This study explores the shape-morphing behavior of 4D-printed structures made from Polylactic Acid (PLA), a prominent bio-sourced shape-memory polymer. Focusing on the response of these structures to thermal stimuli, this research investigates how variou... ver más
Revista: Aerospace

 
Long Li, Yiming Peng, Yifeng Wang, Xiaohui Wei and Hong Nie    
Arresting gear systems play a vital role in carrier-based aircraft landing. In order to accurately understand the process of arresting hook and cable, this study introduces a parameter inversion method to model the arresting cable and applies it to the t... ver más
Revista: Aerospace