Resumen
Most studies of input data used in hydrological models have focused on flow; however, point discharge data negligibly reflect deviations in spatial input data. To study the effects of different input data sources on hydrological processes at the catchment scale, eight MIKE SHE models driven by station-based data (SBD) and remote sensing data (RSD) were implemented. The significant influences of input variables on water components were examined using an analysis of the variance model (ANOVA) with the hydrologic catchment response quantified based on different water components. The results suggest that compared with SBD, RSD precipitation resulted in greater differences in snow storage in the different elevation bands and RSD temperatures led to more snowpack areas with thinner depths. These changes in snowpack provided an appropriate interpretation of precipitation and temperature distinctions between RSD and SBD. For potential evapotranspiration (PET), the larger RSD value caused less plant transpiration because parameters were adjusted to satisfy the outflow. At the catchment scale, the spatiotemporal distributions of sensitive water components, which can be defined by the ANOVA model, indicate that this approach is rational for assessing the impacts of input data on hydrological processes.