Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Water  /  Vol: 7 Par: 6 (2015)  /  Artículo
ARTÍCULO
TITULO

Climate or Land Use??Attribution of Changes in River Flooding in the Sahel Zone

Valentin Aich    
Stefan Liersch    
Tobias Vetter    
Jafet C. M. Andersson    
Eva N. Müller and Fred F. Hattermann    

Resumen

This study intends to contribute to the ongoing discussion on whether land use and land cover changes (LULC) or climate trends have the major influence on the observed increase of flood magnitudes in the Sahel. A simulation-based approach is used for attributing the observed trends to the postulated drivers. For this purpose, the ecohydrological model SWIM (Soil and Water Integrated Model) with a new, dynamic LULC module was set up for the Sahelian part of the Niger River until Niamey, including the main tributaries Sirba and Goroul. The model was driven with observed, reanalyzed climate and LULC data for the years 1950?2009. In order to quantify the shares of influence, one simulation was carried out with constant land cover as of 1950, and one including LULC. As quantitative measure, the gradients of the simulated trends were compared to the observed trend. The modeling studies showed that for the Sirba River only the simulation which included LULC was able to reproduce the observed trend. The simulation without LULC showed a positive trend for flood magnitudes, but underestimated the trend significantly. For the Goroul River and the local flood of the Niger River at Niamey, the simulations were only partly able to reproduce the observed trend. In conclusion, the new LULC module enabled some first quantitative insights into the relative influence of LULC and climatic changes. For the Sirba catchment, the results imply that LULC and climatic changes contribute in roughly equal shares to the observed increase in flooding. For the other parts of the subcatchment, the results are less clear but show, that climatic changes and LULC are drivers for the flood increase; however their shares cannot be quantified. Based on these modeling results, we argue for a two-pillar adaptation strategy to reduce current and future flood risk: Flood mitigation for reducing LULC-induced flood increase, and flood adaptation for a general reduction of flood vulnerability.

 Artículos similares

       
 
Zhaoxin Wang, Tiejun Wang and Yonggen Zhang    
Knowledge of both state (e.g., soil moisture) and flux (e.g., actual evapotranspiration (ETa) and groundwater recharge (GR)) hydrological variables across vadose zones is critical for understanding ecohydrological and land-surface processes. In this stud... ver más
Revista: Water

 
Jae Young Seo and Sang-Il Lee    
Drought is a complex phenomenon caused by lack of precipitation that affects water resources and human society. Groundwater drought is difficult to assess due to its complexity and the lack of spatio-temporal groundwater observations. In this study, we p... ver más
Revista: Water

 
Riguga Su, Chaobin Yang, Zhibo Xu, Tingwen Luo, Lilong Yang, Lifeng Liu and Chao Wang    
Urban landscape has important effects on urban climate, and the local climate zone (LCZ) framework has been widely applied in related studies. However, few studies have compared the relative contributions of LCZ on the urban thermal environment across di... ver más

 
Haidong Ou, Shirong Cai, Wei Fan, Junliang Qiu, Xiaolin Mu, Tao Zhou, Xiankun Yang and Lorenzo Picco    
The Pearl River is one of China?s large rivers, the second-largest river and the fourth-longest river in China. Its unique geography, landform, and climate conditions create unique fluvial geomorphological processes. Affected by human activities and clim... ver más
Revista: Water

 
Qiang Han, Tiansong Qi and Mosammat Mustari Khanaum    
Urbanization and climate change exacerbate groundwater overexploitation and urban flooding. The infiltration basin plays a significant role in protecting groundwater resources because it is a prevalent technology of managed aquifer recharge. It could als... ver más
Revista: Water