Redirigiendo al acceso original de articulo en 19 segundos...
ARTÍCULO
TITULO

A Novel Approach Based on Machine Learning and Public Engagement to Predict Water-Scarcity Risk in Urban Areas

Sadeq Khaleefah Hanoon    
Ahmad Fikri Abdullah    
Helmi Z. M. Shafri and Aimrun Wayayok    

Resumen

Climate change, population growth and urban sprawl have put a strain on water supplies across the world, making it difficult to meet water demand, especially in city regions where more than half of the world?s population now reside. Due to the complex urban fabric, conventional techniques should be developed to diagnose water shortage risk (WSR) by engaging crowdsourcing. This study aims to develop a novel approach based on public participation (PP) with a geographic information system coupled with machine learning (ML) in the urban water domain. The approach was used to detect (WSR) in two ways, namely, prediction using ML models directly and using the weighted linear combination (WLC) function in GIS. Five types of ML algorithm, namely, support vector machine (SVM), multilayer perceptron, K-nearest neighbour, random forest and naïve Bayes, were incorporated for this purpose. The Shapley additive explanation model was added to analyse the results. The Water Evolution and Planning system was also used to predict unmet water demand as a relevant criterion, which was aggregated with other criteria. The five algorithms that were used in this work indicated that diagnosing WSR using PP achieved good-to-perfect accuracy. In addition, the findings of the prediction process achieved high accuracy in the two proposed techniques. However, the weights of relevant criteria that were extracted by SVM achieved higher accuracy than the weights of the other four models. Furthermore, the average weights of the five models that were applied in the WLC technique increased the prediction accuracy of WSR. Although the uncertainty ratio was associated with the results, the novel approach interpreted the results clearly, supporting decision makers in the proactive exploration processes of urban WSR, to choose the appropriate alternatives at the right time.

 Artículos similares

       
 
Zhenwen He, Xianzhen Liu and Chunfeng Zhang    
Three-dimensional voxel models are widely applied in various fields such as 3D imaging, industrial design, and medical imaging. The advancement of 3D modeling techniques and measurement devices has made the generation of three-dimensional models more con... ver más

 
Zhixin Li, Song Ji, Dazhao Fan, Zhen Yan, Fengyi Wang and Ren Wang    
Accurate building geometry information is crucial for urban planning in constrained spaces, fueling the growing demand for large-scale, high-precision 3D city modeling. Traditional methods like oblique photogrammetry and LiDAR prove time consuming and ex... ver más

 
Sujin Woo, Kyungmo Kang and Sangyun Lee    
In 2021, the South Korean government highlighted the Green Remodeling Project for Public Buildings as a crucial initiative for reducing building emissions and tackling post-COVID challenges. Aimed at enhancing energy efficiency and living conditions in p... ver más
Revista: Buildings

 
Dejiang Wang, Quanming Jiang and Jinzheng Liu    
In the field of building information modeling (BIM), converting existing buildings into BIM by using orthophotos with digital surface models (DSMs) is a critical technical challenge. Currently, the BIM reconstruction process is hampered by the inadequate... ver más
Revista: Buildings

 
Tianyi Yang, Marcus White, Ruby Lipson-Smith, Michelle M. Shannon and Mehrnoush Latifi    
Changing the physical environment of healthcare facilities can positively impact patient outcomes. Virtual reality (VR) offers the potential to understand how healthcare environment design impacts users? perception, particularly among those with brain in... ver más
Revista: Buildings