Resumen
This study aims to develop a real-time assessing methodology for a power systems voltage stability. The proposed algorithm is based on the Thévenin equivalent (TE) impedance estimation method, which applies the phasor measurement unit technology practically. To present an accurate analysis of the real-time situations of a power system, the developed voltage stability index can be used as useful information for system operators to establish appropriate countermeasures. Moreover, by considering the results of voltage stability margin calculation within the Korean power system, the effect of voltage stability on the dynamic behavior of the system is presented. Furthermore, to increase the accuracy, load model parameter estimation is introduced in this algorithm. The load model might be used for calculating the stability margin more accurately. The power-voltage curve is drawn in theory using the TE voltages and impedances. To validate the case study of the proposed method, simulations were executed using the Matlab software. The simulations demonstrated the effectiveness of the proposed method and detected voltage stability/instability under severe contingency scenarios.