Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Water  /  Vol: 12 Par: 7 (2020)  /  Artículo
ARTÍCULO
TITULO

Assessment of Wind and Vegetation Interactions in Constructed Wetlands

Mohamed Moustafa and Naiming Wang    

Resumen

Meteorological data from vegetated and un-vegetated wetlands during wet and dry seasons, were collected and analyzed to evaluate the role of wind and vegetation on wetlands? hydrology. Wind speed diminished by as much as 40%, accompanied by a measurable change in wind directions in the vegetated compared to the open water site. Wind speed and direction means were significantly different (p < 0.001 and <0.01), for vegetated and non-vegetated wetland, respectively. Cattails (Typha sp.) and open water estimates of wind drag coefficients using the log wind profile, were 0.016 and 0.009 for dry season, and 0.012 and 0.005 for wet season, respectively. Wind set up near the wetland outlet was more pronounced at shallow water depth (<20 cm). Measured velocity profile during inflow discharge event with a wind speed of 0.53 ms-1, showed two-layer flows; wind-generated surface water flow opposite to a sub-surface inflow. This opposing surface flow increases hydraulic residence time and improve nutrient uptake. Conversely, wind-generated flows aligned with inflow discharges, accelerates water flow towards the outlet, reduce the duration of water-biotic interactions, and decrease nutrient uptake.

 Artículos similares

       
 
Salah Basem Ajjur and Emanuele Di Lorenzo    
Natural groundwater recharge (GR) assessment depends on several hydrogeological and climatic inputs, where uncertainty is inevitable. Assessing how inputs? uncertainty affects GR estimation is important; however, it remains unclear in arid areas. This st... ver más
Revista: Hydrology

 
Tianhao Wang, Hongying Meng, Rui Qin, Fan Zhang and Asoke Kumar Nandi    
Wind turbines are a crucial part of renewable energy generation, and their reliable and efficient operation is paramount in ensuring clean energy availability. However, the bearings in wind turbines are subjected to high stress and loads, resulting in fa... ver más
Revista: Applied Sciences

 
M. Domaneschi, R. Cucuzza, L. Sardone, S. Londoño Lopez, M. Movahedi and G. C. Marano    
Random vibration analysis is a mathematical tool that offers great advantages in predicting the mechanical response of structural systems subjected to external dynamic loads whose nature is intrinsically stochastic, as in cases of sea waves, wind pressur... ver más
Revista: Computation

 
Fan Zhu, Meng Zhang, Fuxuan Ma, Zhihua Li and Xianqiang Qu    
Wind turbine towers experience complex dynamic loads during actual operation, and these loads are difficult to accurately predict in advance, which may lead to inaccurate structural fatigue and strength assessment during the structural design phase, ther... ver más

 
Changkun Yu, Zhigang Wu and Chao Yang    
Slender vehicles often encounter significant aeroservoelastic challenges due to their low elastic mode frequencies and wide servo control system bandwidths. Traditional analysis methods have limitations, including low modeling accuracy for real vehicles ... ver más
Revista: Aerospace