Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Forecasting  /  Vol: 1 Par: 1 (2019)  /  Artículo
ARTÍCULO
TITULO

ARIMA Time Series Models for Full Truckload Transportation Prices

Jason W. Miller    

Resumen

The trucking sector in the United States is a $700 billion plus a year industry and represents a large percentage of many firms? logistics spend. Consequently, there is interest in accurately forecasting prices for truck transportation. This manuscript utilizes the autoregressive integrated moving average (ARIMA) methodology to develop forecasts for three time series of monthly archival trucking prices obtained from two public sources?the Bureau of Labor Statistics (BLS) and Truckstop.com. BLS data cover January 2005 through August 2018; Truckstop.com data cover January 2015 through August 2018. Different ARIMA models closely approximate the observed data, with coefficients of variation of the root mean-square deviations being 0.007, 0.040, and 0.048. Furthermore, the estimated parameters map well onto dynamics known to operate in the industry, especially for data collected by the BLS. Theoretical and practical implications of these findings are discussed.

Palabras claves

 Artículos similares

       
 
Apostolos Ampountolas    
This study analyzes the transmission of market uncertainty on key European financial markets and the cryptocurrency market over an extended period, encompassing the pre-, during, and post-pandemic periods. Daily financial market indices and price observa... ver más
Revista: Forecasting

 
Vienna N. Katambire, Richard Musabe, Alfred Uwitonze and Didacienne Mukanyiligira    
Traffic operation efficiency is greatly impacted by the increase in travel demand and the increase in vehicle ownership. The continued increase in traffic demand has rendered the importance of controlling traffic, especially at intersections. In general,... ver más
Revista: Forecasting

 
Ashish Sedai, Rabin Dhakal, Shishir Gautam, Anibesh Dhamala, Argenis Bilbao, Qin Wang, Adam Wigington and Suhas Pol    
The Machine Learning/Deep Learning (ML/DL) forecasting model has helped stakeholders overcome uncertainties associated with renewable energy resources and time planning for probable near-term power fluctuations. Nevertheless, the effectiveness of long-te... ver más
Revista: Forecasting

 
Ansari Saleh Ahmar, Pawan Kumar Singh, R. Ruliana, Alok Kumar Pandey and Stuti Gupta    
The agriculture sector plays an essential function within the Indian economic system. Foodgrains provide almost all the calories and proteins. This paper aims to compare ARIMA, SutteARIMA, Holt-Winters, and NNAR models to recommend an effective model to ... ver más
Revista: Forecasting

 
Abas Omar Mohamed    
The study investigated the empirical role of past values of Somalia?s GDP growth rates in its future realizations. Using the Box?Jenkins modeling method, the study utilized 250 in-sample quarterly time series data to forecast out-of-the-sample Somali GDP... ver más
Revista: Forecasting