Resumen
This study addresses the challenge of mitigating ammonia and greenhouse gas (GHG) emissions from stored pig slurry using chemical and biological additives. The research employs dynamic chambers to evaluate the effectiveness of these additives. Chemical agents (sulfuric acid) and biological additives (DAB bacteria) containing specific microbial strains are tested (a mixture of Rhodopseudomonas palustris, Bacillus subtilis, Bacillus amyloliquefaciens, Bacillus licheniformis, Nitrosomona europea, Nictobacter winogradaskyi, and nutritional substrate). Controlled experiments simulate storage conditions and measure emissions of ammonia, methane, and carbon dioxide. Through statistical analysis of the results, this study evaluates the additives? impact on emission reduction. Sulfuric acid demonstrated a reduction of 92% in CH4, 99% in CO2, and 99% in NH3 emissions. In contrast, the biological additives showed a lesser impact on CH4, with an 8% reduction, but more substantial reductions of 71% for CO2 and 77% for NH3.These results shed light on the feasibility of employing these additives to mitigate environmental impacts in pig slurry management and contribute to sustainable livestock practices by proposing strategies to reduce the ecological consequences of intensive animal farming.