Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Agriculture  /  Vol: 12 Par: 9 (2022)  /  Artículo
ARTÍCULO
TITULO

Prediction Model for Tea Polyphenol Content with Deep Features Extracted Using 1D and 2D Convolutional Neural Network

Na Luo    
Yunlong Li    
Baohua Yang    
Biyun Liu and Qianying Dai    

Resumen

The content of tea polyphenols (TP) is one of the important indicators for judging the quality of tea. Accurate and non-destructive estimation technology for tea polyphenol content has attracted more and more attention, which has become a key technology for tea production, quality identification, grading and so on. Hyperspectral imaging technology is a fusion of spectral analysis and image processing technology, which has been proven to be an efficient technology for predicting tea polyphenol content. To make full use of spectral and spatial features, a prediction model of tea polyphenols based on spectral-spatial deep features extracted using convolutional neural network (CNN) was proposed, which not only broke the limitations of traditional shallow features, but also innovated the technical path of integrated deep learning in non-destructive detection for tea. Firstly, one-dimensional convolutional neural network (1D-CNN) and two-dimensional convolutional neural network (2D-CNN) models were constructed to extract the spectral deep features and spatial deep features of tea hyperspectral images, respectively. Secondly, spectral deep features, spatial deep features, and spectral-spatial deep features are used as input variables of machine learning models, including Partial Least Squares Regression (PLSR), Support Vector Regression (SVR) and Random Forest (RF). Finally, the training, testing and evaluation were realized using the self-built hyperspectral dataset of green tea from different grades and different manufacturers. The results showed that the model based on spectral-spatial deep features had the best prediction performance among the three machine learning models (R2 = 0.949, MAE = 0.533 for training sets, R2 = 0.938, MAE = 0.799 for test sets). Moreover, the visualization of estimation results of tea polyphenol content further demonstrated that the model proposed in this study had strong estimation ability. Therefore, the deep features extracted using CNN can provide new ideas for estimation of the main components of tea, which will provide technical support for the estimation tea quality estimation.

 Artículos similares

       
 
Haixia Jin, Jingjing Peng, Rutian Bi, Huiwen Tian, Hongfen Zhu and Haoxi Ding    
Mapping soil organic carbon (SOC) accurately is essential for sustainable soil resource management. Hyperspectral data, a vital tool for SOC mapping, is obtained through both laboratory and satellite-based sources. While laboratory data is limited to sam... ver más
Revista: Agronomy

 
Zhiqing Guo, Xiaohui Chen, Ming Li, Yucheng Chi and Dongyuan Shi    
Peanut leaf spot is a worldwide disease whose prevalence poses a major threat to peanut yield and quality, and accurate prediction models are urgently needed for timely disease management. In this study, we proposed a novel peanut leaf spot prediction me... ver más
Revista: Agronomy

 
Li Sun, Jingfa Yao, Hongbo Cao, Haijiang Chen and Guifa Teng    
In agricultural production, rapid and accurate detection of peach blossom bloom plays a crucial role in yield prediction, and is the foundation for automatic thinning. The currently available manual operation-based detection and counting methods are extr... ver más
Revista: Agriculture

 
Xiaobin Mou, Fangxin Wan, Jinfeng Wu, Qi Luo, Shanglong Xin, Guojun Ma, Xiaoliang Zhou, Xiaopeng Huang and Lizeng Peng    
To enhance the utilization of seed-used watermelon peel and mitigate environmental pollution, a hammer-blade seed-used watermelon peel crusher was designed and manufactured, and its structure and working parameters were optimized. Initially, the seed-use... ver más
Revista: Agriculture

 
Yuanyuan Shao, Shengheng Ji, Guantao Xuan, Yanyun Ren, Wenjie Feng, Huijie Jia, Qiuyun Wang and Shuguo He    
The objective is to develop a portable device capable of promptly identifying root rot in the field. This study employs hyperspectral imaging technology to detect root rot by analyzing spectral variations in chili pepper leaves during times of health, in... ver más
Revista: Agronomy